Skip to main content

Patched Completed Local Binary Pattern is an Effective Method for Neuroblastoma Histological Image Classification

  • Conference paper
  • First Online:
Data Mining (AusDM 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 845))

Included in the following conference series:

Abstract

Neuroblastoma is the most common extra cranial solid tumour in children. The histology of neuroblastoma has high intra-class variation, which misleads existing computer-aided histological image classification methods that use global features. To tackle this problem, we propose a new Patched Completed Local Binary Pattern (PCLBP) method combining Sign Binary Pattern (SBP) and Magnitude Binary Pattern (MBP) within local patches to build feature vectors which are classified by k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM) classifiers. The advantage of our method is extracting local features which are more robust to intra-class variation compared to global ones. We gathered a database of 1043 histologic images of neuroblastic tumours classified into five subtypes. Our experiments show the proposed method improves the weighted average F-measure by 1.89% and 0.81% with k-NN and SVM classifiers, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ImageScope (2016). http://www.leicabiosystems.com/digital-pathology/digital-pathology-management/imagescope/

  2. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152 (1992)

    Google Scholar 

  3. Boucheron, L.: Object-and spatial-level quantitative analysis of multispectral histopathology images for detection and characterization of cancer. Doctoral Dissertation in University of California at Santa Barbara (2008)

    Google Scholar 

  4. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 1–27 (2011). http://www.csie.ntu.edu.tw/~cjlin/libsvm

    Article  Google Scholar 

  5. Cortes, C., Vapnik, V.: Support-Vector Networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  6. Cosatto, E., Miller, M., Graf, H., Meyer, J.: Grading nuclear pleomorphism on histological micrographs. In: International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  7. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  8. Farjam, R., Soltanian-Zadeh, H., Jafari-Khouzani, K., Zoroofi, R.: An image analysis approach for automatic malignancy determination of prostate pathological images. Cytometry Part B: Clin. Cytometry 72(4), 227–240 (2007)

    Article  Google Scholar 

  9. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MathSciNet  Google Scholar 

  10. Hinton, J., Osindero, S.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  11. Hipp, J., Flotte, T., Monaco, J., Cheng, J., Madabhushi, A., Yagi, Y., Rodriguez-Canales, J., Emmert-Buck, M., Dugan, M., Hewitt, S., Toner, M., Tompkins, R., Lucas, D., Gilbertson, J., Balis, U.: Computer-aided diagnostic tools aim to empower rather than replace pathologists: lessons learned from computational chess. J. Pathol. Inf. 2(1), 25 (2011)

    Article  Google Scholar 

  12. Kong, J., Sertel, O., Shimada, H., Boyer, K., Saltz, J., Gurcan, M.: Computer-aided evaluation of neuroblastoma on whole-slide histology images: classifying grade of neuroblastic differentiation. Pattern Recogn. 42(6), 1080–1092 (2009)

    Article  Google Scholar 

  13. Lee, K., Street, W.: An adaptive resource-allocating network for automated detection, segmentation, and classification of breast cancer nuclei topic area: image processing and recognition. IEEE Trans. Neural Netw. 14(3), 680–687 (2003)

    Article  Google Scholar 

  14. Lehmann, E.L., Casella, G.: Theory of Point Estimation. STS. Springer, New York (1998). https://doi.org/10.1007/b98854

    Book  MATH  Google Scholar 

  15. Mohammed, E., Mohamed, M., Naugler, C., Far, B.: Chronic lymphocytic leukemia cell segmentation from microscopic blood images using watershed algorithm and optimal thresholding. In: 26th IEEE Canadian Conference on Electrical and Computer Engineering, pp. 1–5 (2013)

    Google Scholar 

  16. Nguyen, K., Jain, A., Sabata, B.: Prostate cancer detection: fusion of cytological and textural features. J. Pathol. Inf. 2, S3 (2011)

    Article  Google Scholar 

  17. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  18. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  19. Park, J., Caron, H., Eggert, A.: Neuroblastoma: biology, prognosis, and treatment. Pediatr. Clin. North Am. 55(1), 97–120 (2008)

    Article  Google Scholar 

  20. Powers, D.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness, and correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

    MathSciNet  Google Scholar 

  21. Qureshi, H., Sertel, O., Rajpoot, N., Wilson, R., Gurcan, M.: Adaptive discriminant wavelet packet transform and local binary patterns for meningioma subtype classification. In: Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention, Part II. pp. 196–204 (2008)

    Google Scholar 

  22. Sharma, H., Zerbe, N., Heim, D., Wienert, S., Behrens, H., Hellwich, O., Hufnagl, P.: A multi-resolution approach for combining visual information using nuclei segmentation and classification in histopathological images. In: 10th International Conference on Computer Vision Theory and Applications, pp. 37–46 (2015)

    Google Scholar 

  23. Shimada, H., Ambros, I., Dehner, L., Hata, J., Joshi, V., Roald, B., Stram, D., Gerbing, R., Lukens, J., Matthay, K., Castleberry, R.: The international neuroblastoma pathology classification (the Shimada system). Cancer 86(2), 364–372 (1999)

    Article  Google Scholar 

  24. Spanhol, F., Oliveira, L., Caroline, P., Laurent, H.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2016)

    Article  Google Scholar 

  25. Tabesh, A., Teverovskiy, M., Pang, H., Kumar, V., Verbel, D., Kotsianti, A., Saidi, O.: Multifeature prostate cancer diagnosis and gleason grading of histological images. IEEE Trans. Med. Imaging 26(10), 1366–1378 (2007)

    Article  Google Scholar 

  26. Tafavogh, S., Meng, Q., Catchpoole, D., Kennedy, P.: Automated quantitative and qualitative analysis of the whole slide images of neuroblastoma tumour for making a prognosis decision. In: Proceedings of the IASTED 11th International Conference on Biomedical Engineering, pp. 244–251 (2014)

    Google Scholar 

  27. Veta, M., Pluim, J., van Diest, P., Viergever, M.: Breast cancer histopathology image analysis: a review. IEEE Trans. Biomed. Eng. 61(5), 1400–1411 (2014)

    Article  Google Scholar 

  28. Yu, K., Zhang, C., Berry, G., Altman, R., Re, C., Rubin, D., Snyder, M.: Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 7, 1–10 (2016)

    Google Scholar 

  29. Zhang, Y., Zhang, B., Lu, W.: Breast cancer histological image classification with multiple features and random subspace classifier ensemble. Stud. Comput. Intell. 450, 27–42 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheila Gheisari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gheisari, S., Catchpoole, D.R., Charlton, A., Kennedy, P.J. (2018). Patched Completed Local Binary Pattern is an Effective Method for Neuroblastoma Histological Image Classification. In: Boo, Y., Stirling, D., Chi, L., Liu, L., Ong, KL., Williams, G. (eds) Data Mining. AusDM 2017. Communications in Computer and Information Science, vol 845. Springer, Singapore. https://doi.org/10.1007/978-981-13-0292-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0292-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0291-6

  • Online ISBN: 978-981-13-0292-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics