Skip to main content

Strength Criterion Associated with the Loading Direction for Transversely Isotropic Soils

  • Conference paper
  • First Online:
Proceedings of GeoShanghai 2018 International Conference: Fundamentals of Soil Behaviours (GSIC 2018)

Included in the following conference series:

  • 4343 Accesses

Abstract

The strength properties of transversely isotropic soils are closely related to the loading direction. These direction-dependent properties have been testified by a series of laboratory tests. Two primary features for peak strength are obtained: the distortion of the strength curve on the deviatoric plane and the change of the internal friction angle associated with the direction angle between the major principal stress-acting plane and the depositional plane. How to describe these two features in a unified way is a difficult and hot research topic. This paper aims at solving this problem by proposing a strength parameter that was obtained by projecting the microstructure tensor on the direction of the spatial mobilized plane. It is an approach to extend an isotropic strength criterion into a transverse isotropy one. The combination of the proposed strength parameter with the isotropic non-linear unified strength criterion can well capture the distorted strength curve and its evolution with the increase of direction angle. The effects of the intermediated principle stress ratio b and the direction angle δ are also analysed. Material parameters in the proposed criterion can be conveniently obtained from the conventional laboratory tests. It is demonstrated that the new proposed criterion can be verified favorably by the test results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Su, S.F., Liao, H.J.: Effect of strength anisotropy on undrained slope stability in clay. Géotechnique 49(2), 215–230 (1999)

    Article  Google Scholar 

  2. Fu, P.C., Dafalias, Y.F.: Study of anisotropic shear strength of granular materials using DEM simulation. Int. J. Numer. Anal. Methods Geomech. 35(10), 1098–1126 (2011)

    Article  Google Scholar 

  3. Kimura, T., Kusakabe, O., Saitoh, K.: Geotechnical model tests of bearing in a centrifuge. Géotechnique 35(1), 33–45 (1985)

    Article  Google Scholar 

  4. Zdravkovic, L., Potts, D.M., Hight, D.W.: The effect of strength anisotropy on the behaviour of embankments on soft ground. Géotechnique 52(6), 447–457 (2002)

    Article  Google Scholar 

  5. Sun, D.A., et al.: An anisotropic hardening elastoplastic model for clays and sands and its application to FE analysis. Comput. Geotech. 31(1), 37–46 (2004)

    Article  Google Scholar 

  6. Oda, M., Koishikawa, I., Higuchi, T.: Experimental study of anisotropic shear strength of sand by plane strain test. Soils Found. 18(1), 25–38 (1978)

    Article  Google Scholar 

  7. Tatsuoka, F., et al.: Strength and deformation characteristics of sand in plane strain compression at extremely low pressures. Soils Found. 26(1), 65–84 (1986)

    Article  Google Scholar 

  8. Callisto, L., Calabresi, G.: Mechanical behaviour of a natural soft clay. Géotechnique 48(4), 495–513 (1998)

    Article  Google Scholar 

  9. Rodriguez, N.M., Lade, P.V.: True triaxial tests on cross-anisotropic deposits of fine Nevada sand. Int. J. Geomech. 13(6), 779–793 (2013)

    Article  Google Scholar 

  10. Kirkgard, M.M., Lade, P.V.: Anisotropic three-dimensional behavior of a normally consolidated clay. Can. Geotech. J. 30(5), 848–858 (1993)

    Article  Google Scholar 

  11. Zdravkovic, L., Jardine, R.J.: The effect on anisotropy of rotating the principal stress axes during consolidation. Géotechnique 51(1), 69–83 (2001)

    Article  Google Scholar 

  12. Yang, L.T., et al.: A laboratory study of anisotropic geomaterials incorporating recent micromechanical understanding. Acta Geotech. 11(5), 1111–1129 (2016)

    Article  Google Scholar 

  13. Lade, P.V., Rodriguez, N.M., Van Dyck, E.J.: Effects of principal stress directions on 3D failure conditions in cross-anisotropic sand. J. Geotech. Geoenviron. Eng. 140(2), 1–12 (2014)

    Article  Google Scholar 

  14. Mortara, G.: A yield criterion for isotropic and cross-anisotropic cohesive-frictional materials. Int. J. Numer. Anal. Meth. Geomech. 34(10), 953–977 (2010)

    Google Scholar 

  15. Abelev, A.V., Lade, P.V.: Characterization of failure in cross-anisotropic soils. J. Eng. Mech. 130(5), 599–606 (2004)

    Article  Google Scholar 

  16. Tobita, Y., Yanagisawa, E.: Modified stress tensors for anisotropic behavior of granular materials. Soils Found. 32(1), 85–99 (1992)

    Article  Google Scholar 

  17. Gao, Z.W., Zhao, J.D., Yao, Y.P.: A generalized anisotropic failure criterion for geomaterials. Int. J. Solids Struct. 47(22–23), 3166–3185 (2010)

    Article  Google Scholar 

  18. Pietruszczak, S., Mroz, Z.: Formulation of anisotropic failure criteria incorporating a microstructure tensor. Comput. Geotech. 26(2), 105–112 (2000)

    Article  Google Scholar 

  19. Yao, Y.P., Kong, Y.X.: Extended UH model: three-dimensional unified hardening model for anisotropic clays. J. Eng. Mech. 138(7), 853–866 (2012)

    Article  Google Scholar 

  20. Liu, M.D., Indraratna, B.N.: General strength criterion for geomaterials including anisotropic effect. Int. J. Geomech. 11(3), 251–261 (2011)

    Article  Google Scholar 

  21. Pietruszczak, S., Guo, P.J.: Description of deformation process in inherently anisotropic granular materials. Int. J. Numer. Anal. Meth. Geomech. 37(5), 478–490 (2013)

    Article  Google Scholar 

  22. Rodriguez, N.M., Lade, P.V.: Effects of principal stress directions and mean normal stress on failure criterion for cross-anisotropic sand. J. Eng. Mech. 139(11), 1592–1601 (2013)

    Article  Google Scholar 

  23. Lu, D.C., et al.: Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept. Int. J. Geomech. 17(2) (2017). https://doi.org/10.1061/(ASCE)gm.1943-5622.0000729

    Article  Google Scholar 

  24. Ma, C., et al.: Developing a 3D elastoplastic constitutive model for soils: a new approach based on characteristic stress. Comput. Geotech. 86, 129–140 (2017)

    Article  Google Scholar 

  25. Imam, S.M.R., et al.: Effect of anisotropic yielding on the flow liquefaction of loose sand. Soils Found. 42(2), 33–44 (2002)

    Article  Google Scholar 

  26. Lade, P.V.: Failure criterion for cross-anisotropic soils. J. Geotech. Geoenviron. Eng. 134(1), 117–124 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 51522802, 51778026, 51421005) and the National Natural Science Foundation of Beijing (8161001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dechun Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, J., Lu, D., Zhang, J., Du, X. (2018). Strength Criterion Associated with the Loading Direction for Transversely Isotropic Soils. In: Zhou, A., Tao, J., Gu, X., Hu, L. (eds) Proceedings of GeoShanghai 2018 International Conference: Fundamentals of Soil Behaviours. GSIC 2018. Springer, Singapore. https://doi.org/10.1007/978-981-13-0125-4_26

Download citation

Publish with us

Policies and ethics