Skip to main content

High Temperature Creep Behavior and Fracture Characteristics of a 2%Ru Nickel Based Single Crystal Superalloy

  • Conference paper
  • First Online:
High Performance Structural Materials (CMC 2017)

Included in the following conference series:

  • 3162 Accesses

Abstract

The creep behavior and fracture characteristics of a new type of 2%Ru nickel base single crystal superalloy was studied through measurement of creep properties and microstructure observation. The results show that the alloy has good creep properties at 1070–1100 °C and 127–147 MPa. The apparent activation energy of creep is: Q = 416.8 kJ/mol and the stress index n is: n = 4.67 at the steady creep stage. The deformation mechanism of alloy in the steady state of creep is that the dislocation slip in the matrix and climb over the γ′ phase in the matrix, and the dislocation can be cut into the γ′ phase in the late stage of creep. Under high temperature and low stress, the γ′ phase of the alloy can form raft structure, and the crack initiation at the interface between the raft γ′ phase and the matrix phase. With the crack propagation, aggregation and connectivity, the creep resistance of the alloy decreases sharply, which eventually leads to creep rupture of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monajati H, Jahazi M, Bahrami R. The influence of heat treatment conditions on γ′ characteristics in Udimet 720. Materials Science and Engineering A, 373(1–2) (2004) 286–293.

    Google Scholar 

  2. Jesser W A, Zhang B W. Formation energy of ternary alloy systems calculated by an extended miedema model. Physica B, 315(1) (2002) 123–132.

    Google Scholar 

  3. Diologent F, Caron P, Jacques A, et al. The γ′/γ mismatch in Ni based superalloys: In situ measurements during creep test. Nuclear Instruments and Methods in Physics Research Section B, 200(4) (2002) 346–351.

    Google Scholar 

  4. Knowles M D, Hunt D W. The influence of microstructure and environment on the crack growth behavior of powder metallurgy nickel superalloy RR1000. Metallurgical and Materials Transaction A, 33(10) (2002) 3165–3172.

    Google Scholar 

  5. Unocic R R, Viswanathan G B, Sarosi P M, et al. Mechanisms of creep deformation in polycrystalline Ni-base disk superalloys. Materials Science and Engineering A, 483–484(4) (2008) 25–32.

    Google Scholar 

  6. Raujiol S, Pettinari F, Locq D, et al. Creep straining micro-mechanisms in a powder-metallurgical nickel-based superalloy. Materials Science and Engineering A, 387–389(2) (2004) 678–682.

    Google Scholar 

  7. Lu Z Z, Liu C L, Yue Z F. Probabilistic safe analysis of the working life of a powder metallurgical turbine disc. Materials Science and Engineering A, 395(1–2) (2005) 153–159.

    Google Scholar 

  8. Kovarik L, Unocic R R, Li J, et al. The intermediate temperature deformation of Ni-based superalloys: importance of reordering. Journal of Metals, 61(2) (2009) 42–48.

    Google Scholar 

Download references

Acknowledgements

Sponsorship of this research by the Natural Science Foundation of China under grant no. 51271125 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sugui Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, S., Tian, S., Liu, Z., Shu, D. (2018). High Temperature Creep Behavior and Fracture Characteristics of a 2%Ru Nickel Based Single Crystal Superalloy. In: Han, Y. (eds) High Performance Structural Materials. CMC 2017. Springer, Singapore. https://doi.org/10.1007/978-981-13-0104-9_63

Download citation

Publish with us

Policies and ethics