Skip to main content

Bacteriophage-Mediated Biosensors for Detection of Foodborne Pathogens

  • Chapter
  • First Online:
Microbial Bioprospecting for Sustainable Development

Abstract

Food is the primary source of energy for living organisms. However, depending on a variety of factors, including source, freshness, and storage conditions, food may undergo spoilage by microorganisms and cause foodborne disease outbreaks that can be detrimental to community and human health. There is thus a need for developing rapid, accurate, and reliable methods for the detection of foodborne pathogens. Bacteriophages (phages), viruses that infect and replicate in bacterial cells, can be exploited as bio-receptors in biosensor detection systems, serving as a promising prospect in biotechnology. Phage-mediated detection methods are reliable, quick, precise, sensitive, selective, and cost effective. Bacteriophage-based biosensors are being used to sense pathogens at significantly low bacterial cell concentrations, as well as being used for monitoring the health and safety aspects of food in real time. In this chapter, we review recent progress in phage-based sensing strategies for developing biosensor technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hamid I, Ivnitski D, Atanasov P, Wilkins E (1999a) Flow-through immunofiltration assay system for rapid detection of E. coli O157: H7. Biosens Bioelectron 14:309–316

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Hamid I, Ivnitski D, Atanasov P, Wilkins E (1999b) Highly sensitive flow-injection immunoassay system for rapid detection of bacteria. Anal Chim Acta 399:99–108

    Article  CAS  Google Scholar 

  • Ackermann HW (2003) Bacteriophage observations and evolution. Res Microbiol 154:245–251

    Article  CAS  PubMed  Google Scholar 

  • Ackermann HW (2007) 5500 Phages examined in the electron microscope. Arch Virol 152:227–243

    Article  CAS  PubMed  Google Scholar 

  • Ackermann H (2009) Phage classification and characterization bacteriophages. Methods Mol Biol 501:127–140

    Article  CAS  PubMed  Google Scholar 

  • Akhtar M, Viazis S, Diez-Gonzalez F (2014) Isolation, identification and characterization of lytic, wide host range bacteriophages from waste effluents against Salmonella enterica serovars. Food Control 38:67

    Article  Google Scholar 

  • Aldus CF, Van Amerongen A, Ariens RMC, Peck MW, Wichers JH, Wyatt GM (2003) Principles of some novel rapid dipstick methods for detection and characterization of verotoxigenic Escherichia coli. J Appl Microbiol 95:380–389

    Article  CAS  PubMed  Google Scholar 

  • Allwood PB, Malik YS, Maherchandani S, Vought K, Johnson LA, Braymen C, Hedberg CW, Goyal SM (2004) Occurrence of Escherichia coli, noroviruses, and F-specific coliphages in fresh market-ready produce. J Food Prot 67:2387–2390

    Article  PubMed  Google Scholar 

  • Alocilja E, Radke SM (2003) Market analysis of biosensors for food safety. Biosens Bioelectron 18:841–846

    Article  CAS  PubMed  Google Scholar 

  • Altedruse SF, Stern NJ, Fields PI, Swerdlow DL (1999) Campylobacter jejuni—an emerging foodborne pathogen. Emerg Infect Dis 5:28–35

    Article  Google Scholar 

  • Al-Zoreky N, Sandine WE (1990) Highly selective medium for isolation of Listeria monocytogenes from food. Appl Environ Microbiol 56:3154–3157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arora P, Sindhu A, Dilbaghi N, Chaudhury A (2011) Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 28:1–12

    Article  CAS  PubMed  Google Scholar 

  • Artault S, Blind JL, Delaval J, Dureuil Y, Gaillard N (2001) Detecting Listeria monocytogenes in food. Int Food Hyg 12:23

    Google Scholar 

  • Atterbury RJ, Connerton PL, Dodd CER, Rees CED, Connerton IF (2003) Isolation and characterization of Campylobacter bacteriophages from retail poultry. Appl Environ Microbiol 69:4511–4518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atterbury RJ, Van Bergen MAP, Ortiz F et al (2007) Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl Environ Microbiol 73(14):4543–4549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayçiçek, H, Aydogan, H, Küçükkaraaslan, A, Baysallar, M and Basustaoglu, AC (2004) Assessment of the bacterial contamination on hands of hospital food handlers. Food Control, 15:253–259

    Article  Google Scholar 

  • Balasubramanian S, Panigrahi S, Logue CM, Marchello M, Sherwood JS (2005) Identification of Salmonella-inoculated beef using a portable electronic nose system. J Rapid Methods Automation Microbiol 13:71–95

    Article  Google Scholar 

  • Balasubramanian S, Sorokulova IB, Vodyanoy VJ, Simonian AL (2007) Lytic phage as a specific and selective probe for detection of Staphylococcus aureus — a surface plasmon resonance spectroscopic study. Biosens Bioelectron 22:948–955

    Article  CAS  PubMed  Google Scholar 

  • Banerjee P, Lenz D, Robinson JP, Rickus JL, Bhunia AK (2008) A novel and simple cell-based detection system with a collagen-encapsulated B-lymphocyte cell line as a biosensor for rapid detection of pathogens and toxins. Lab Investig 88:196–206

    Article  CAS  PubMed  Google Scholar 

  • Baumler AJ, Hargis BM, Tsolis RM (2000) Tracing the origins of Salmonella outbreaks. Science 287:50–52

    Article  CAS  PubMed  Google Scholar 

  • Begum YA, Chakraborty S, Chowdhury A, Ghosh AN, Nair GB, Sack RB, Svennerholm AM, Qadri F (2010) Isolation of a bacteriophage specific for CS7-expressing strains of enterotoxigenic Escherichia coli. J Med Microbiol 59:266–272

    Article  CAS  PubMed  Google Scholar 

  • Bennett RW (2005) Staphylococcal enterotoxin and its rapid identification in foods by enzyme-linked immunosorbent assay-based methodology. J Food Prot 68:1264–1270

    Article  CAS  PubMed  Google Scholar 

  • Berkenpas E, Millard P, da Cunha MP (2006) Detection of Escherichia coli O157: H7 with langasite pure shear horizontal surface acoustic wave sensors. Biosens Bioelectron 21:2255–2262

    Article  CAS  PubMed  Google Scholar 

  • Beumer RR, Brinkman E (1989) Detection of Listeria spp with a monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA). Food Microbiol 6:171–178

    Article  Google Scholar 

  • Bhunia AK, Banada P, Banerjee P, Valadez A, Hirleman ED (2007) Light scattering, fiber optic and cell-based sensors for sensitive detection of foodborne pathogens. J Rapid Methods Automation Microbiol 15:121–145

    Article  Google Scholar 

  • Birge EA (1994) Bacterial and bacteriophage genetics, 3rd edn. Springer, New York, pp 16–51

    Book  Google Scholar 

  • Blaser MJ, Newman LS (1982) A review of human salmonellosis: I. Infective dose. Rev Infect Dis 4:1096–1106

    Article  CAS  PubMed  Google Scholar 

  • Bokken G, Corbee RJ, van Knapen F, Bergwerff AA (2003) Immunochemical detection of Salmonella group B, D and E using an optical surface plasmon resonance biosensor. FEMS Microbiol Lett 222:75–82

    Article  CAS  PubMed  Google Scholar 

  • Borck B, Stryhn H, Ersboll AK, Pedersen K (2002) Thermophilic Campylobacter spp in Turkey samples: evaluation of two automated enzyme immunoassays and conventional microbiological techniques. J Appl Microbiol 92:574–582

    Article  CAS  PubMed  Google Scholar 

  • Boyle EC, Bishop JL, Grassl GA, Finlay BB (2007) Salmonella: from pathogenesis to therapeutics. J Bacteriol 189:1489–1495

    Article  CAS  PubMed  Google Scholar 

  • Bradley DE (1967) Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev 31:230–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Briones C, Mateo-Marti E, Gomez-Navarro C, Parro V, Roman E, Martin-Gago JA (2004) Ordered self-assembled monolayers of peptide nucleic acids with DNA recognition capability. Phys Rev Lett 93:208103

    Article  CAS  PubMed  Google Scholar 

  • Brooks JL, Mirhabibollahi B, Kroll RG (1992) Experimental enzyme-linked amperometric immunosensors for the detection of Salmonellas in foods. J Appl Bacteriol 73:189–196

    Article  CAS  PubMed  Google Scholar 

  • Bruttin A, Brüssow H (2005) Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49:2874–2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchwald M, Steed-Glaister P, Siminovitch L (1970a) The morphogenesis of bacteriophage lambda I purification and characterization of λ head and λ tails. Virology 42:375–389

    Article  CAS  PubMed  Google Scholar 

  • Buchwald M, Steed-Glaister P, Siminovitch L (1970b) The morphogenesis of bacteriophage lambda II identification of the principal structural proteins. Virology 42:390–400

    Article  CAS  PubMed  Google Scholar 

  • Callaway TR, Edrington TS, Brabban A, Kutter E, Karriker L, Stahl C, Wagstrom E, Anderson RC, Genovese K, McReynolds J, Harvey R, Nisbet DJ (2010) Occurrence of Salmonella-specific bacteriophages in swine feces collected from commercial farms. Foodborne Pathog Dis 7:851–856

    Article  PubMed  Google Scholar 

  • Campas M, Carpentier R, Rouillon R (2008) Plant tissue- and photosynthesis-based biosensors. Biotechnol Adv 26:370–378

    Article  CAS  PubMed  Google Scholar 

  • Campbell A (1967) In: Taylor JH (ed) Molecular genetics part II. Academic, New York, P323

    Google Scholar 

  • Che YH, Yang ZP, Li YB, Paul D, Slavik M (1999) Rapid detection of Salmonella typhimurium using an immunoelectrochemical method coupled with immunomagnetic separation. J Rap Meth Auto Microbiol 7:47–59

    Article  CAS  Google Scholar 

  • Che YH, Li YB, Slavik M (2001) Detection of Campylobacter jejuni in poultry samples using an enzyme-linked immunoassay coupled with an enzyme electrode. Biosens Bioelectron 16:791–797

    Article  CAS  PubMed  Google Scholar 

  • Chemburu S, Wilkins E, Abdel-Hamid I (2005) Detection of pathogenic bacteria in food samples using highly dispersed carbon particles. Biosens Bioelectron 21:491–499

    Article  CAS  PubMed  Google Scholar 

  • Chen CS, Durst RA (2006) Simultaneous detection of Escherichia coli O157: H7, Salmonella spp and Listeria monocytogenes with an array-based immunosorbent assay using universal protein G-liposomal nanovesicles. Talanta 69:232–238

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Knabel SJ (2007) Multiplex PCR for simultaneous detection of bacteria of the genus Listeria, Listeria monocytogenes, and major serotypes and epidemic clones of L. monocytogenes. Appl Environ Microbiol 73:6299–6304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SH, Wu VCH, Chuang YC, Lin CS (2008) Using oligonucleotide-functionalized au nanoparticles to rapidly detect foodborne pathogens on a piezoelectric biosensor. J Microbiol Methods 73:7–17

    Article  CAS  PubMed  Google Scholar 

  • Choi SH, Lee SB (2004) Development of reverse transcriptase–polymerase chain reaction of fimA gene to detect viable Salmonella in milk. J Anim Sci Technol 46:841–848

    Article  CAS  Google Scholar 

  • Churchill RLT, Lee H, Hall JC (2006) Detection of Listeria monocytogenes and the toxin listeriolysin O in food. J Microbiol Methods 64:141–170

    Article  CAS  PubMed  Google Scholar 

  • Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  CAS  PubMed  Google Scholar 

  • Coons AH, Creech HJ, Jones RN, Berliner E (1942) The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J Immunol 45:159–170

    CAS  Google Scholar 

  • Crowley EL, O'Sullivan CK, Guilbault GG (1999) Increasing the sensitivity of Listeria monocytogenes assays: evaluation using ELISA and amperometric detection. Analyst 124:295–299

    Article  CAS  PubMed  Google Scholar 

  • Dastider SG, Berizuddin S, Yuksek MD, Almasri MF (2015) Efficient and rapid detection of Salmonella using microfluidic impedance based sensing. J Sensor, article ID 293461, 8 pages

    Google Scholar 

  • Davis R, Burgula Y, Deering A, Irudayaraj J, Reuhs BL, Mauer LJ (2010a) Detection and differentiation of live and heat-treated Salmonella enterica serovars inoculated onto chicken breast using Fourier transform infrared (FT-IR) spectroscopy. J Appl Microbiol 109:2019–2031

    Article  CAS  PubMed  Google Scholar 

  • Davis R, Irudayaraj J, Reuhs BL, Mauer LJ (2010b) Detection of E. coli O157:H7 from ground beef using Fourier transform infrared (FT-IR) spectroscopy and chemometrics. J Food Sci 75:340–346

    Article  CAS  Google Scholar 

  • DeBoer E, Beumer RR (1999) Methodology for detection and typing of foodborne microorganisms. Int J Food Microbiol 50:119–130

    Article  CAS  Google Scholar 

  • Deisingh AK, Thompson M (2004) Strategies for the detection of Escherichia coli O157: H7 in foods. J Appl Microbiol 96:419–429

    Article  CAS  PubMed  Google Scholar 

  • DeMarco DR, Lim DV (2002) Detection of Escherichia coli O157: H7 in 10- and 25-gram ground beef samples with an evanescent-wave biosensor with silica and polystyrene waveguides. J Food Prot 65:596–602

    Article  PubMed  Google Scholar 

  • Dickson JS, Chen JA (2001) Fast and accurate detection method of E coli O157:H7 in beef. Abstr Gen Meet Am Soc Microbiol 101:573

    Google Scholar 

  • Donnenberg MS, Whittam TS (2001) Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. J Clin Invest 107:539–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas J (1975) Bacteriophages. Chapman and Hall Ltd, London, pp 105–107

    Book  Google Scholar 

  • Dubey RS, Upadhyay SN (2001) Microbial corrosion monitoring by an amperometric microbial biosensor developed using whole cell of Pseudomonas sp. Biosens Bioelectron 16:995–100

    Article  CAS  PubMed  Google Scholar 

  • Dubow MS (1994) Bacterial identification and use of bacteriophages. In: Webster RG, Granoff A (eds) Encyclopedia of virology. Academic, San Diego, pp 78–81

    Google Scholar 

  • Duckworth DH (1987) History and basic properties of bacterial viruses. Wiley, New York

    Google Scholar 

  • Dultsev FN, Speight RE, Fiorini MT, Blackburn JM, Abell C, Ostanin VP, Klenerman D (2001) Direct and quantitative detection of bacteriophage by “hearing” surface detachment using a quartz crystal microbalance. Anal Chem 73:3935–3939

    Article  CAS  PubMed  Google Scholar 

  • Ercole C, Del Gallo M, Mosiello L, Baccella S, Lepidi (2003) Escherichia coli detection in vegetable food by a potentiometric biosensor. Sensors Actuators B Chem 91:163–168

    Article  CAS  Google Scholar 

  • Escherich T (1885) Die darmbakterien des neugeborenen und sauglings. Fortschr Med 3:547–554

    Google Scholar 

  • Ewing WH (1986) Edwards and Ewing’s identification of Enterobacteriaceae, 4th edn. Elsevier, New York

    Google Scholar 

  • Fan Y, Chen XT, Kong JM, Tung CH, Gao ZQ (2007) Direct detection of nucleic acids by tagging phosphates on their backbones with conductive nanoparticles. Angew Chem Int Ed 46:2051–2054

    Article  CAS  Google Scholar 

  • Farber JM, Peterkin PL (1991) Listeria monocytogenes, a food-borne pathogen. Mol Bio Rev 55:476–511

    CAS  Google Scholar 

  • Feldsine PT, Lienau AH, Forgey RL, Calhoon RD (1997) Visual immunoprecipitate assay (VIP) for Listeria monocytogenes and related Listeria species detection in selected foods: collaborative study. J AOAC Int 80:791–805

    CAS  PubMed  Google Scholar 

  • Fiorentin L, Vieira ND, Barioni W Jr (2005) Oral treatment with bacteriophages reduces the concentration of Salmonella enteritidis PT4 in caecal contents of broilers. Avian Pathol 34:258–263

    Article  PubMed  Google Scholar 

  • Gangar V, Curiale MS, D'Onorio A, Schultz A, Johnson RL, Atrache V (2000) VIDAS®enzyme-linked immunofluorescent assay for detection of Listeria in foods: collaborative study. J AOAC Int 83:903–918

    CAS  PubMed  Google Scholar 

  • Gehring AG, Patterson DL, Tu SI (1998) Use of a light-addressable potentiometric sensor for the detection of Escherichia coli O157: H7. Anal Biochem 258:293–298

    Article  CAS  PubMed  Google Scholar 

  • Gehring AG, Irwin PL, Reed SA, Tu SI (2006) Enzyme-linked immunomagnetic chemiluminescence incorporating anti-H7 and anti-O157 antibodies for the detection of Escherichia coli O157: H7. J Rapid Meth Automat Microbiol 14:349–361

    Article  Google Scholar 

  • Geng P, Zhang X, Meng W, Wang Q, Zhang W, Jin L, Feng Z, Wu Z (2008) Self-assembled monolayers-based immunosensor for detection of Escherichia coli using electrochemical impedance spectroscopy. Electrochim Acta 53:4663–4668

    Article  CAS  Google Scholar 

  • Genigeorgis C, Carniciu M, Dutulescu D, Farver TB (1991) Growth and survival of Listeria monocytogenes in market cheeses stored at 4 to 30 degrees C. J Food Prot 54:662–668

    Article  Google Scholar 

  • Gervais L (2007) T4 bacteriophage fuctionalized micro-cantilevers for highly specific bacteria detection. Master’s Thesis, The University of Alberta

    Google Scholar 

  • Giannella RA, Broitman SA, Zamcheck N (1972) Gastric acid barrier to ingested microorganisms in man: studies in vivo and in vitro. Gut 13:251–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannella RA, Broitman SA, Zamcheck N (1973) Influence of gastric acidity on bacterial and parasitic enteric infections. A perspective. Ann Intern Med 78:271–276

    Article  CAS  PubMed  Google Scholar 

  • Goode D, Allen VM, Barrow PA (2003) Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol 69:5032–5036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodridge L, Griffiths M (2002) Reporter bacteriophage assay as a means to detect foodborne pathogenic bacteria. Food Res Int 35:863–870

    Article  CAS  Google Scholar 

  • Gottesman M, Oppenheim A (1994) Lysogeny and prophage. In: Webster RG, Graof A (eds) Encyclopedia of virology. Academic, New York, pp 814–824

    Google Scholar 

  • Grabow WOK (2001) Bacteriophages: Update on application as models for viruses in water Water SA, vol 24, pp 251–268

    Google Scholar 

  • Grabow WOK, Coubrough P, Nupen EM, Bateman BW (1984) Evaluation of coliphages as indicators of the virological quality of sewage-polluted water. Water SA 10:7–14

    Google Scholar 

  • Gray MJ, Zadoks RN, Fortes ED, Dogan B, Cai S, Chen Y, Scott VN, Gombas DE, Boor KJ, Wiedmann M (2004) Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations. Appl Environ Microbiol 70:5833–5841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guard-Petter J (2001) The chicken, the egg and Salmonella enteritidis. Environ Microbiol 3:421–430

    Article  CAS  PubMed  Google Scholar 

  • Guenther S, Huwyler D, Richard S, Loessner MJ (2009) Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl Environ Microbiol 75(1):93–100

    Article  CAS  PubMed  Google Scholar 

  • Guntupalli R, Hu J, Lakshmanan RS, Huang TS, Barbaree JM, Chin BA (2007) A magnetoelastic resonance biosensor immobilized with polyclonal antibody for the detection of Salmonella typhimurium. Biosens Bioelectron 22:1474–1479

    Article  CAS  PubMed  Google Scholar 

  • Hagens S, Loessner MJ (2007) Application of bacteriophages for detection and control of foodborne pathogens. Appl Microbiol Biotechnol 76:513–519

    Article  CAS  PubMed  Google Scholar 

  • Hengerer A, Decker J, Prohaska E, Hauck S, Kosslinger C, Wolf H (1999) Quartz crystal microbalance (QCM) as a device for the screening of phage libraries. Biosens Bioelectron 14:139–144

    Article  CAS  PubMed  Google Scholar 

  • Hibi K, Abe A, Ohashi E, Mitsubayashi K, Ushio H, Hayashi T, Ren H, Endo H (2006) Combination of immunomagnetic separation with flow cytometry for detection of Listeria monocytogenes. Anal Chim Acta 573:158–163

    Article  PubMed  CAS  Google Scholar 

  • Hochel I, Slavickova D, Viochna D, Skvor J, Steinhauserova I (2007) Detection of Campylobacter species in foods by indirect competitive ELISA using hen and rabbit antibodies. Food Agric Immunol 18:151–167

    Article  CAS  Google Scholar 

  • Huang S, Li S-Q, Yang H, Johnson M, Wan J, Chen I, Petrenko VA, Barbaree JM, Chin BA (2008) Optimization of phage-based magnetoelastic biosensor performance. Sens Trans 3:87–96

    CAS  Google Scholar 

  • Hudson PJ, Vogt RL, Brondum J, Patton CM (1984) Isolation of Campylobacter jejuni from milk during an outbreak of campylobacteriosis. J Infect Dis 150:789

    Article  CAS  PubMed  Google Scholar 

  • Hudson JA, Lake RJ, Savill MG, Scholes P, McCormick RE (2001) Rapid detection of Listeria monocytogenes in ham samples using immunomagnetic separation followed by polymerase chain reaction. J Appl Microbiol 90:614–621

    Article  CAS  PubMed  Google Scholar 

  • Jamalludeen N, Johnson RP, Friendship R, Kropinski AM, Lingohr EJ, Gyles CL (2007) Isolation and characterization of nine bacteriophages that lyse O149 enterotoxigenic Escherichia coli. Vet Microbiol 124:47–57

    Article  CAS  PubMed  Google Scholar 

  • Jamalludeen N, She YM, Lingohr EJ, Griffiths M (2009) Isolation and characterization of virulent bacteriophages against Escherichia coli serogroups O1, O2, and O78. Poult Sci 88:1694–1702

    Article  CAS  PubMed  Google Scholar 

  • Jechorek RP, Johnson RL (2008) Evaluation of the VIDAS ®staph enterotoxin II (SET 2) immunoassay method for the detection of Staphylococcal enterotoxins in selected foods: collaborative study. J AOAC Int 91:164–173

    CAS  PubMed  Google Scholar 

  • Jin SS, Zhou J, Ye J (2008) Adoption of HACCP system in the Chinese food industry: a comparative analysis. Food Control 19:823–828

    Article  Google Scholar 

  • Jofre A, Martin B, Garriga M, Hugas M, Pla M, Rodrıguez-Lázaro D, Aymerich T (2005) Simultaneous detection of Listeria monocytogenes and Salmonella by multiplex PCR in cooked ham. Food Microbiol 22:109–115

    Article  CAS  Google Scholar 

  • Kay D, Crowther J, Fewtrell L, Francis CA, Hopkins M, Kay C, McDonald AT, Stapleton CM, Watkins J, Wilkinson J, Wyer MD (2008) Quantification and control of microbial pollution from agriculture: a new policy challenge? Environ Sci Pol 11:171–184

    Article  Google Scholar 

  • Kennedy JE, Bitton G (1987) Bacteriophages in foods. In: Goyal SM, Gerba CP, Bitton G (eds) Phage ecology. Wiley, New York, pp 289–316

    Google Scholar 

  • Kim JS, Lee GG, Park JS, Jung YH, Kwak HS, Kim SB, Nam YS, Kwon ST (2007) A novel multiplex PCR assay for rapid and simultaneous detection of five pathogenic bacteria: Escherichia coli O157:H7, Salmonella, Staphylococcus aureus, Listeria monocytogenes, and Vibrio para haemolyticus. J Food Prot 70:1656–1662

    Article  CAS  PubMed  Google Scholar 

  • Kist M (1985) The historical background of Campylobacter infection: new aspects. In: Pearson AD, editor Proceedings of the 3rd International Workshop on Campylobacter Infections; Ottawa. Public Health Laboratory Service, London, pp 23–27

    Google Scholar 

  • Ko SH, Grant SA (2006) A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium. Biosens Bioelectron 21:1283–1290

    Article  CAS  PubMed  Google Scholar 

  • Koubova V, Brynda E, Karasova L, Skvor J, Homola J, Dostalek J, Tobiška P, Rošický J (2001) Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensors Actuators B Chem 74:100–105

    Article  CAS  Google Scholar 

  • Kropinski AM, Waddell T, Meng J, Franklin K, Ackermann HW, Ahmed R, Mazzocco A, Yates J, Lingohr EJ, Johnson RP (2013) The host-range, genomics and proteomics of Escherichia coli O157:H7 bacteriophage rV5. Virol J 10:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubitschek HE (1990) Cell volume increase in Escherichia coli after shifts to richer media. J Bacteriol 172:94–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudva IT, Jelacic S, Tarr PI, Youderian P, Hovde CJ (1999) Biocontrol of Escherichia coli O157 with O157-specific bacteriophages. Appl Environ Microbiol 65:3767–3773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lammali UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  Google Scholar 

  • Lazcka O, Del Campo FJ, Munoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensor. Biosens Bioelectron 22:1205–1217

    Article  CAS  PubMed  Google Scholar 

  • Leonard P, Hearty S, Quinn J, O'Kennedy R (2004) A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens Bioelectron 19:1331–1335

    Article  CAS  PubMed  Google Scholar 

  • Lermo A, Campoy S, Barbe J, Hernandez S, Alegret S, Pividori M (2007) In situ DNA amplification with magnetic primers for the electrochemical detection of food pathogens. Biosens Bioelectron 22:2010–2017

    Article  CAS  PubMed  Google Scholar 

  • Leverentz B, Conway WS, Camp MJ, Janisiewicz WJ, Abuladze T, Yang M, Saftner R, Sulakvelidze A (2003) Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol 69:4519–4526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leverentz B, Conway WS, Janisiewicz W, Camp MJ (2004) Optimizing concentration and timing of a phage spray application to reduce Listeria monocytogenes on honeydew melon tissue. J Food Prot 67:1682–1686

    Article  PubMed  Google Scholar 

  • Lifshitz R, Joshi R (1998) Comparison of a novel ColiPlate kit and the standard membrane filter technique for enumerating total coliforms and Escherichia coli bacteria in water. Environ Toxicol Water Qual 13:157–164

    Article  CAS  Google Scholar 

  • Lior H (1994) Classification of Escherichia coli. In: Gyles CL (ed) Escherichia coli in domestic animals and humans. CAB International, Wallingford, pp 31–72

    Google Scholar 

  • Liu J, Dehbi M, Moeck G, Arhin F, Bauda P, Bergeron D, Callejo M, Ferretti V, Ha N, Kwan T, McCarty J, Srikumar R, Williams D, Wu JJ, Gros P, Pelletier J, DuBow M (2004) Antimicrobial drug discovery through bacteriophage genomics. Nature Biotech 22:185–191

    Article  CAS  Google Scholar 

  • Loc Carrillo C, Atterbury RJ, el-Shibiny A, Connerton PL, Dillon E, Scott A, Connerton IF (2005) Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl Environ Microbiol 71:6554–6563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loeffler J, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172

    Article  CAS  PubMed  Google Scholar 

  • Loessner MJ, Bussesse M (1990) Bacteriophage typing of Listeria species. Appl Environ Microbiol 56:1912–1918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loessner MJ, Neugirg E, Zink R, Schere S (1993) Isolation, classification and molecular characterization of bacteriophages for Enterobacter species. J Gen Microbiol 139:2627–2633

    Article  CAS  PubMed  Google Scholar 

  • Luria S, Delbruck M, Anderson TF (1943) Electron microscope studies of bacterial viruses. J Bacteriol 46:57–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma YL, Lu CP (2008) Isolation and identification of a bacteriophage capable of infecting Streptococcus suis type 2 strains. Vet Microbiol 132:340–347

    Article  CAS  PubMed  Google Scholar 

  • Mackay RA, Goode MT, Stopa PJ, Zulich AW (1991) Light addressable potentiometric sensor based detection of toxins and pathogens. Abstr Pap Am Chem Soc 201:69

    Google Scholar 

  • Mahony J, Mc Auliffe O, Ross RP, Sinderen DV (2011) Bacteriophages as biocontrol agents of food pathogens. Curr Opin Biotechnol 22:157–163

    Article  CAS  PubMed  Google Scholar 

  • Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM (2010) The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889

    Article  PubMed  Google Scholar 

  • Malorny B, Anderson A, Huber I (2007) Salmonella real-time PCR-Nachweis. J Verbrauchersch Lebensmitt J Consum Prot Food Saf 2:149–156

    Article  CAS  Google Scholar 

  • Maloy SR, Cronan JE, Freifelder D (1994) Microbial Genetics, 2nd edn. Jones and Bartlett, London, pp 81–86

    Google Scholar 

  • Matar GM, Hayes PS, Bibb WF, Swaminathan B (1997) Listeriolysin O-based latex agglutination test for the rapid detection of Listeria monocytogenes in foods. J Food Prot 60:1038–1040

    Article  Google Scholar 

  • Mateo-Marti E, Briones C, Pradier CM, Martin-Gago JA (2007) A DNA biosensor based on peptide nucleic acids on gold surfaces. Biosens Bioelectron 22:1926–1932

    Article  CAS  PubMed  Google Scholar 

  • Mattingly JA, Butman BT, Plank MC, Durham RJ, Robison BJ (1988) Rapid monoclonal antibody-based enzyme-linked immunosorbent assay for detection of Listeria in food products. J Assoc Off Anal Chem 71:679–681

    CAS  PubMed  Google Scholar 

  • McNaught AD, Wilkinson A (1997) IUPAC Compendium of Chemical Terminology, 2nd edn. (the “Gold Book”) Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Mead JS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C (1999) Food-related illness and death in the United States. Emerg Infect Dis 5:607–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meeusen CA, Alocilja EC, Osburn WN (2005) Detection of E. coli O157: H7 using a miniaturized surface plasmon resonance biosensor. Trans ASAE 48:2409–2416

    Article  CAS  Google Scholar 

  • Mejri MB, Baccar H, Baldrich E, DelCampo FJ, Helali S, Ktaria T, Simonianc A, Aouni M, Abdelghani A (2010) Impedance biosensing using phages for bacteria detection: generation of dual signals as the clue for in-chip assay confirmation. Biosens Bioelectron 26:1261–1267

    Article  CAS  PubMed  Google Scholar 

  • Mejri MB, Baccar H, Ktari T, Aouni M, Abdelghani A (2011) Detection of E. coli bacteria using impedance spectroscopy and surface plasmon resonance imaging-based biosensor. Sens Lett 9:2130–2132

    Article  CAS  Google Scholar 

  • Messelhausser U, Fricker M, Ehling-Schulz M, Ziegler H, Elmer-Englhard D, Kleih W (2007) Real-time-PCR-system for detection of Bacillus cereus (emetic type) in the food. J Verbrauchersch Lebensmittelsich J Consum Prot Food Saf 2:190–193

    Article  Google Scholar 

  • Montgomery N, David J (2014) Concentration and detection of low levels of Escherichia coli O157:H7, Listeria monocytogenes 4b, and Salmonella enterica Typhimurium in high organic load lettuce wash. J Appl Microbiol 96:419–429

    Google Scholar 

  • Morgan D, Mawer SL, Harman PL (1994) The role of homemade ice cream as a vehicle of Salmonella enteritidis phage type 4 infection from fresh shell eggs. Epidemiol Infect 113:21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mucchetti G, Bonvini B, Francolino S, Neviani E, Carminati D (2008) Effect of washing with a high pressure water spray on removal of Listeria innocua from gorgonzola cheese rind. Food Control 19:521–525

    Article  Google Scholar 

  • Muhammad-Tahir Z, Alocilja EC (2003a) A conductometric biosensor for biosecurity. Biosens Bioelectron 18:813–819

    Article  CAS  PubMed  Google Scholar 

  • Muhammad-Tahir Z, Alocilja EC (2003b) Fabrication of a disposable biosensor for Escherichia coli O157: H7 detection. IEEE Sensors J 3:345–351

    Article  CAS  Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro – the polymerase chain-reaction. Cold Spring Harb Symp Quant Biol 51:263–273

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Berbel X, Vigués N, Jenkins AT, Mas J, Muñoz FJ (2008) Impedimetric approach for quantifying low bacteria concentrations based on the changes produced in the electrode-solution interface during the pre-attachment stage. Biosens Bioelectron 23:1540–1546

    Article  PubMed  CAS  Google Scholar 

  • Murphy NM, McLauchlin J, Ohai C, Grant KA (2007) Construction and evaluation of a microbiological positive process internal control for PCR-based examination of food samples for Listeria monocytogenes and Salmonella enterica. Int J Food Microbiol 120:110–119

    Article  CAS  PubMed  Google Scholar 

  • Naidoo R, Singh A, Arya SK, Beadle B, Glass N, Tanha J, Szymanski CM, Evoy S (2012) Surface-immobilization of chromatographically purified bacteriophages for the optimized capture of bacteria. Bacteriophage 1:15–24

    Article  Google Scholar 

  • Nanduri V, Sorokulova IB, Samoylov AM, Simonian AL, Petrenko VA, Vodyanoy V (2007) Phage as a molecular recognition element in biosensors immobilized by physical adsorption. Biosens Bioelectron 22:986–992

    Article  CAS  PubMed  Google Scholar 

  • Neill MA, Tarr PI, Taylor DN, Trofa AF (1994) Escherichia coli. In: Hui YH, Gorham JR, Murell KD, Cliver DO (eds) Foodborne disease handbook. Marcel Decker, Inc, New York, pp 169–213

    Google Scholar 

  • Nelson D (2004) Phage taxonomy: we agree to disagree. J Bacteriol 186:7029–7031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Flynn G, Ross RP, Fitzgerald GF, Coffey A (2004) Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl Environ Microbiol 70:3417–3424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogert RA, Brown JE, Singh BR, Shriverlake LC, Ligler FS (1992) Detection of Clostridium botulinum toxin-a using a fiber optic-based biosensor. Anal Biochem 205:306–312

    Article  CAS  PubMed  Google Scholar 

  • Oh BK, Lee W, Lee WH, Choi JW (2003) Nano-scale probe fabrication using self-assembly technique and application to detection of Escherichia coli O157: H7. Biotechnol Bioprocess Eng 8:227–232

    Article  CAS  Google Scholar 

  • Oh BK, Lee W, Kim YK, Lee WH, Choi JW (2004) Surface plasmon resonance immunosensor using self-assembled protein G for the detection of Salmonella paratyphi. J Biotechnol 111:1–8

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Ying W, Alocija EC, Downes FP (2008) Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices. Biosyst Eng 99:461–468

    Article  Google Scholar 

  • Palumbo JD, Borucki MK, Mandrell RE, Gorski L (2003) Serotyping of Listeria monocytogenes by enzyme-linked immunosorbent assay and identification of mixed-serotype cultures by colony immunoblotting. J Clin Microbiol 41:564–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pancrazio JJ, Whelan JP, Borkholder DA, Ma W, Stenger DA (1999) Development and application of cell-based biosensors. Ann Biomed Eng 27:697–711

    Article  CAS  PubMed  Google Scholar 

  • Park MK, Li S, Chin BA (2013) Detection of Salmonella typhimurium grown directly on tomato surface using phage-based Magnetoelastic biosensors. Food Bioprocess Technol 6:682–689

    Article  CAS  Google Scholar 

  • Pathirana ST, Barbaree J, Chin BA, Hartell MG, Neely WC, Vodyanoy V (2000) Rapid and sensitive biosensor for Salmonella. Biosens Bioelectron 15:135–141

    Article  CAS  PubMed  Google Scholar 

  • Pelczar ML, Chan ECS, Krieg NR (1988) Microbiology. Mc Graw-Hill International, New York

    Google Scholar 

  • Perry L, Heard P, Kane M, Kim H, Savikhin S, Dominguez W, Applegate B (2007) Application of multiplex polymerase chain reaction to the detection of pathogens in food. J Rapid Methods Automation Microbiol 15:176–198

    Article  CAS  Google Scholar 

  • Pettya NK, Evansa TJ, Finerana PC, Salmond GPC (2006) Biotechnological exploitation of bacteriophage research. Trends Biotechnol 25:7–15

    Article  CAS  Google Scholar 

  • Piatek, DR and Ramaen, DLJ (2001) Method for controlling the freshness of food products liable to pass an expiry date, uses a barcode reader device that reads in a conservation code when a product is opened and determines a new expiry date which is displayed. [Patent number: FR2809519-A1]

    Google Scholar 

  • Poppe C (2000) Salmonella infections in the domestic fowl; Salmonella in domestic animals. CAB International, New York

    Google Scholar 

  • Rabsch W, Tschape H, Baumler AJ (2001) Nontyphoidal salmonellosis: emerging problems. Microbes Infect 3:237–247

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy V, Cresencem VM, Rejitha JS, Lekshmi MU, Dharsana KS, Prasad SP, Vijila HM (2007) Listeria – review of epidemiology and pathogenesis. J Microbiol Immunol Infect 40:4–13

    CAS  PubMed  Google Scholar 

  • Rasooly A, Rasooly RS (1998) Detection and analysis of Staphylococcal enterotoxin a in food by western immunoblotting. Int J Food Microbiol 41:205–212

    Article  CAS  PubMed  Google Scholar 

  • Ray B, Bhunia A (2007) Fundamental food microbiology, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  • Raya RR, Varey P, Oot RA, Dyen MR, Callaway TR, Edrington TS, Kutter EM, Brabban AD (2006) Isolation and characterization of a new T-even bacteriophage, CEV1, and determination of its potential to reduce Escherichia coli O157:H7 levels in sheep. Appl Environ Microbiol 72:6405–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Refseth UH, Hoidal HK, Kolpus T, Mathiesen S, Nesbakken T, Eckner K, Jakobsen KS (2001) Evaluation of a new diagnostic system utilizing magnetic beads for rapid detection of Salmonella in food samples. Abstr Gen Meet Am Soc Microbiol 101:576

    Google Scholar 

  • Regenmortel VM (1990) Virus species, a much neglected but essential concept in virus classification. Intervirology 31:241–271

    Article  PubMed  Google Scholar 

  • Reymond F, Rossier JS, Morier P (2007) Amperometric detection method for determining presence, amount, or concentration of analyte in microfluidic sensor by filling microfluidic sensor with sample to be analyzed, and performing amperometry to detect the analyte [patent number:WO2007115694-A2; WO2007115694-A3]

    Google Scholar 

  • Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hebert RJ, Olcott ES, Johnson LM, Hargrett NT, Blake PA, Cohen ML (1983) Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med 308:681–685

    Article  CAS  PubMed  Google Scholar 

  • Ripp S, Miller RV (1997) The role of pseudo lysogeny in bacteriophage-host interactions in a natural freshwater environment. Microbiol Mol Biol Rev 143:2065–2070

    CAS  Google Scholar 

  • Riyaz-Ul-Hassan S, Verma V, Qazi GN (2008) Evaluation of three different molecular markers for the detection of Staphylococcus aureus by polymerase chain reaction. Food Microbiol 25:452–459

    Article  CAS  PubMed  Google Scholar 

  • Rizzuto R, Pinton P, Brini M, Chiesa A, Filippin L, Pozzan T (1999) Mitochondria as biosensors of calcium micro domains. Cell Domain 26:193–199

    CAS  Google Scholar 

  • Rodriguez-Lazaro D, D'Agostino M, Herrewegh A, Pla M, Cook N, Ikonomopoulos J (2005) Real-time PCR-based methods for detection of Mycobacterium avium subsp paratuberculosis in water and milk. Int J Food Microbiol 101:93–104

    Article  CAS  PubMed  Google Scholar 

  • Rohrbach BW, Draughon FA, Davidson PM, Oliver SP (1992) Prevalence of Listeria monocytogenes, Campylobacter jejuni, Yersinia enterocolitica, and Salmonella in bulk tank milk: risk factors and risk of human exposure. J Food Prot 55:93–97

    Article  Google Scholar 

  • Rohrbach F, Karadeniz H, Erdemb A, Famulok M, Mayer G (2012) Label-free impedimetric aptasensor for lysozyme detection based on carbon nanotube-modified screen-printed electrodes. Anal Biochem 421:454–459

    Article  CAS  PubMed  Google Scholar 

  • Ronner AC, Lindmark H (2007) Quantitative detection of Campylobacter jejuni on fresh chicken carcasses by real-time PCR. J Food Prot 70:1373–1378

    Article  PubMed  Google Scholar 

  • Ruan CM, Zeng KF, Varghese OK, Grimes CA (2004) A staphylococcal enterotoxin B magnetoelastic immunosensor. Biosens Bioelectron 20:585–591

    Article  CAS  PubMed  Google Scholar 

  • Sanders SQ, Boothe DH, Frank JF, Arnold JW (2007) Culture and detection of Campylobacter jejuni within mixed microbial populations of biofilms on stainless steel. J Food Prot 70:1379–1385

    Article  PubMed  Google Scholar 

  • Schmilovitch Z, Mizrach A, Alchanatis V, Kritzman G, Korotic R, Irudayaraj J (2005) Detection of bacteria with low-resolution Raman spectroscopy. Trans ASAE 48:1843–1850

    Article  Google Scholar 

  • Schneid AD, Rodrigues KL, Chemello D, Tondo EC, Ayub MAZ, Aleixo JAG (2006) Evaluation of an indirect ELISA for the detection of Salmonella in chicken meat. Braz J Microbiol 37:350–355

    Article  Google Scholar 

  • Schuch R, Nelson D, Fischetti VA (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418:884–889

    Article  CAS  PubMed  Google Scholar 

  • Sergeev N, Distler M, Courtney S, Al-Khaldi SF, Volokhov D, Chizhikov V, Rasooly A (2004) Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosens Bioelectron 20:684–698

    Article  CAS  PubMed  Google Scholar 

  • Shabani A, Zourob M, Allain M, Marquette CA, Lawrence MF, Mandeville R (2007) Electrochemical detection of bacteria using bacteriophage. IEEE 1:4244–1449

    Google Scholar 

  • Shabani A, Zourob M, Allain M, Marquette CA, Lawrence MF, Mandeville R (2008) Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria. Anal Chem 80:9475–9482

    Article  CAS  PubMed  Google Scholar 

  • Sharma H, Agarwal M, Goswami M, Sharma A, Roy SK, Rai R, Murugan MS (2013) Biosensors: tool for food borne pathogen detection. Vet World 6:968–973

    Article  CAS  Google Scholar 

  • Sharpy RJ, Ahmady SI, Munster A, Dowsett B, Atkinson T (1986) The isolation and characterization of bacteriophages infecting obligately thermophilic strains of Bacillus. J Gen Microbiol 132(1709–1):122

    Google Scholar 

  • Sheng H, Knecht HJ, Kudva IT, Hovde CJ (2006) Application of bacteriophages to control intestinal Escherichia coli O157:H7 levels in ruminants. Appl Environ Microbiol 72:5359–5366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim WB, Choi JG, Kim JY, Yang ZY, Lee KH, Kim MG, Ha SD, Kim KS, Kim KY, Kim CH, Ha KS, Eremin SA, Chung DH (2007) Production of monoclonal antibody against Listeria monocytogenes and its application to immunochromatography strip test. J Microbiol Biotechnol 17:1152–1161

    CAS  PubMed  Google Scholar 

  • Sidhu SS (2005) Phage display in biotechnology and drug discovery. Taylor and Francis Group, Boca Raton

    Book  Google Scholar 

  • Simpson JM, Lim DV (2005) Rapid PCR confirmation of E. coli 0157: H7 after evanescent wave fiber optic biosensor detection. Biosens Bioelectron 21:881–887

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Jain P (2017) Development of phage mediated quartz crystal microbalance (QCM) sensor for the detection of Escherichia coli, a food-borne pathogen. Afr J Biotechnol (in Press)

    Google Scholar 

  • Singh A, Glass N, Tolba M, Brovko L, Griffiths M, Evoy S (2009) Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens. Biosens Bioelectron 24:3645–3651

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Poshtiban S, Evoy S (2013) Recent advance in bacteriophage based biosensors for food-borne pathogen detection. Sensors 13:1763–1786

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Jain P, Dahiya S (2015a) Bacteriophage based self-assembled monolayer (SAM) on gold surface used for detection of E. coli by electrochemical analysis. Afr J Microbiol Res 9(30):1832–1839

    Article  Google Scholar 

  • Singh V, Rawal V, Lakhanpal S, Jain P, Dahiya S, Tripathi CC (2015b) Immobilized bacteriophage used for specific detection of E coli using electrochemical impedance sensing. Int J Pharm Sci Res 6(9):3913–3919

    CAS  Google Scholar 

  • Singh V, Jain P, Dahiya S (2016) Isolation and characterization of bacteriophage from waste water against E. coli, a food borne pathogen. Asian Jr of Microbiol Biotech Env Sc 18(1):163–170

    Google Scholar 

  • Siragusa GR, Line JE, Schutz AR (2001) Fluorescent detection of Campylobacter spp on colony immunoblots. Abstr Gen Meet Am Soc Microbiol 101:577

    Google Scholar 

  • Smith HW, Huggins MB (1982) Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 128:307–318

    CAS  PubMed  Google Scholar 

  • Smith HW, Huggins MB (1983) Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J Gen Microbiol 129:2659–2675

    CAS  PubMed  Google Scholar 

  • Smith HW, Huggins MB, Shaw KM (1987) The control of experimental Escherichia coli diarrhea in calves by means of bacteriophages. J Gen Microbiol 133:1111–1126

    CAS  PubMed  Google Scholar 

  • Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C (2001) The bacteriophage phi29 portal motor can package DNA against a large internal force. Nature 413:748–752

    Article  CAS  PubMed  Google Scholar 

  • Stern NJ, Line JE (1992) Comparison of three methods for recovery of Campylobacter spp from broiler carcasses. J Food Prot 55:663–666

    Article  Google Scholar 

  • Strachan NJC, Gray DI (1995) A rapid general-method for the identification of PCR products using a fiberoptic biosensor and its application to the detection of Listeria. Lett Appl Microbiol 21:5–9

    Article  CAS  PubMed  Google Scholar 

  • Su XL, Li YB (2005) A QCM immunosensor for Salmonella detection with simultaneous measurements of resonant frequency and motional resistance. Biosens Bioelectron 21:840–848

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Irudayaraj J, Ryan T (2006) A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157: H7. Biosens Bioelectron 21:998–1006

    Article  CAS  PubMed  Google Scholar 

  • Sulakvelidze A, Kutter E (2005) Bacteriophage therapy in humans. In: Bacteriophages: biology and applications. CRC Press, Boca Raton, pp 381–436

    Google Scholar 

  • Sword CP, Pickett MJ (1961) The isolation and characterization of bacteriophages from Listeria monocytogenes. J Gen Microbiol 25:241–248

    Article  CAS  PubMed  Google Scholar 

  • Synnott AJ, Kuang Y, Kurimoto M, Yamamichi K, Iwano H, Tanji Y (2009) Isolation from sewage influent and characterization of novel Staphylococcus aureus bacteriophages with wide host ranges and potent lytic capabilities. Appl Environ Microbiol 75:4483–4490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanji Y, Shimada T, Fukudomi H, Miyanaga K, Nakai Y, Unno H (2005) Therapeutic use of phage cocktail for controlling Escherichia coli 0157:H7 in gastrointestinal tract of mice. J Biosci Bioeng 100:280–287

    Article  CAS  PubMed  Google Scholar 

  • Tartera C, Jofre J (1987) Bacteriophages active against Bacteroides fragilis in sewage-polluted waters. Appl Environ Microbiol 53:1632–1637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor AD, Yu QM, Chen SF, Homola J, Jiang SY (2005) Comparison of E. coli O157: H7 preparation methods used for detection with surface plasmon resonance sensor. Sensors Actuators B Chem 107:202–208

    Article  CAS  Google Scholar 

  • Taylor AD, Ladd J, Yu QM, Chen SF, Homola J, Jiang SY (2006) Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens Bioelectron 22:752–758

    Article  CAS  PubMed  Google Scholar 

  • Thomas C, Abelson J Jr (1966) The isolation and characterization of DNA from bacteriophages. Prog Nucl Acid Res Mol Biol 1:553–561

    Google Scholar 

  • Tlili C, Sokullu E, Safavieh M, Tolba M, Ahmed MU, Zourob M (2013) Bacteria screening, viability, and confirmation assays using bacteriophage-impedimetric/loop-mediated isothermal amplification dual-response biosensors. Anal Chem 85:4893–4901

    Article  CAS  PubMed  Google Scholar 

  • Tokarskyy O, Marshall DL (2008) Immunosensors for rapid detection of Escherichia coli O157:H7 perspectives for use in the meat processing industry. Food Microbiol 25:1–12

    Article  CAS  PubMed  Google Scholar 

  • Tolba M, Ahmed MU, Tlili C, Eichenseher F, Loessner MJ, Zourob M (2012) A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells. Analyst 137:5749–5756

    Article  CAS  PubMed  Google Scholar 

  • Tully E, Higson SP, Kennedy RO (2008) The development of a ‘labeless’ immunosensor for the detection of Listeria monocytogenes cell surface protein, Internalin B. Biosens Bioelectron 23:906–912

    Article  CAS  PubMed  Google Scholar 

  • Twarog R, Blouse LE (1968) Isolation and characterization of transducing bacteriophage BP1 for Bacterium anitratum (Achromobacter sp). J Virol 2:716–722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umali-Deininger D, Sur M (2007) Food safety in a globalizing world: opportunities and challenges for India. Agric Econ 37:135–147

    Article  Google Scholar 

  • Uttenthaler E, Schraml M, Mandel J, Drost S (2001) Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids. Biosens Bioelectron 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Uyttendaele M, Bastiaansen A, Debevere J (1997) Evaluation of the NASBA® nucleic acid amplification system for assessment of the viability of Campylobacter jejuni. Int J Food Microbiol 37:13–20

    Article  CAS  PubMed  Google Scholar 

  • Uzzau S, Brown DJ, Wallis T, Rubino S, Leori G, Bernard S, Casadesús J, Platt DJ, Olsen JE (2000) Host adapted serotypes of Salmonella enterica. Epidemiol Infect 125:229–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdivieso-Garcia A, Desruisseau A, Riche E, Fukuda S, Tatsumi H (2003) Evaluation of a 24-hour bioluminescent enzyme immunoassay for the rapid detection of Salmonella in chicken carcass rinses. J Food Prot 66:1996–2004

    Article  CAS  PubMed  Google Scholar 

  • Vandamme P, Debruyne L, De Brandt E, Falsen E (2010) Reclassification of Bacteroides ureolyticus as campylobacter ureolyticus comb. nov., and emended description of the genus campylobacter. Int J System Evol Microbio 60(9):2016–2022

    Article  CAS  Google Scholar 

  • Vaughan RD, O’Sullivan CK, Guilbault GG (2001) Development of a quartz crystal microbalance (QCM) immunosensor for the detection of Listeria monocytogenes. Enzym Microb Technol 29:635–638

    Article  CAS  Google Scholar 

  • Vaughan RD, Carter RM, O’Sullivan CK, Guilbault GG (2003) Development of a quartz crystal microbalance sensor for the detection of Bacillus cereus. Anal Lett 36:731–747

    Article  CAS  Google Scholar 

  • Vedrine C, Leclerc JC, Durrieu C, Tran-Minh C (2003) Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron 18:457–463

    Article  CAS  PubMed  Google Scholar 

  • Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254

    Article  CAS  PubMed  Google Scholar 

  • Vo-Dinh T, Cullum B (2000) Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J Anal Chem 366:540–551

    Article  CAS  PubMed  Google Scholar 

  • Vought KJ, Tatini SR (1998) Salmonella enteritidis contamination of ice cream associated with a 1994 multistate outbreak. J Food Prot 61:5–10

    Article  CAS  PubMed  Google Scholar 

  • Wagenaar JA, Van Bergen MA, Mueller MA, Wassenaar TM, Carlton RM (2005) Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet Microbiol 109:275–280

    Article  PubMed  Google Scholar 

  • Waswa J, Irudayaraj J, DebRoy C (2007) Direct detection of E. coli O157: H7 in selected food systems by a surface plasmon resonance biosensor. LWT Food Sci Technol 40:187–192

    Article  CAS  Google Scholar 

  • Weller TH, Coons AH (1954) Fluorescent antibody studies with agents of varicella and herpes zoster propagated in-vitro. Proc Soc Exp Biol Med 86:789–794

    Article  CAS  PubMed  Google Scholar 

  • Wells JG, Davis BR, Wachsmuth IK, Riley LW, Remis RS, Sokolow R, Morris GK (1983) Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J Clin Microbiol 18:512–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whichard JM, Sriranganathan N, Pierson FW (2003) Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. J Food Prot 66:220–225

    Article  PubMed  Google Scholar 

  • WHO (2005) International health regulations. The Fifty-Eighth World Health Assembly. World Health Organization, Geneva

    Google Scholar 

  • WHO (2007a) Food safety and food-borne illness fact sheet no 237 (reviewed March 2007). World Health Organization, Geneva

    Google Scholar 

  • WHO (2007b) The World Health Report, 2007 global public health security in the 21st century. World Health Organization, Geneva

    Google Scholar 

  • Williamsom SJ, McLaughlin MR, Paul JH (2001) Interaction of the FHSIC virus with its host: Lysogeny or pseudo lysogeny? Appl Environ Microbiol 67:1682–1688

    Article  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol 64:69–114

    Article  CAS  Google Scholar 

  • Wong LY, Cao Y, Balachandran P, Zoder P, Furtado MR, Petrauskene OV, Tebbs RS (2012) Validation of the applied Biosystems MicroSEQ real-time PCR system for detection of E. coli O157:H7 in food. J AOAC Int 95:1495–1504

    Article  CAS  PubMed  Google Scholar 

  • Yang LJ, Ruan CM, Li YB (2001) Rapid detection of Salmonella typhimurium in food samples using a bioenzyme electrochemical biosensor with flow injection. J Rapid Methods Automation Microbiol 9:229–240

    Article  CAS  Google Scholar 

  • Yang LJ, Li YB, Griffis CL, Johnson MG (2004) Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosens Bioelectron 19:1139–1147

    Article  CAS  PubMed  Google Scholar 

  • Yang LMC, Tam PY, Murray BJ, McIntire TM, Overstreet CM, Weiss GA, Penner RM (2006) Virus electrodes for universal biodetection. Anal Chem 78:3265–3270

    Article  CAS  PubMed  Google Scholar 

  • Yaron S, Matthews KR (2002) A reverse transcriptase–polymerase chain reaction assay for detection of viable Escherichia coli O157:H7: investigation of specific target genes. J Appl Microbiol 92:633–640

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Liu Y, Li Y (2002) A chemiluminescence fiber-optic biosensor coupled with immunomagnetic separation for rapid detection of E. coli O15: H7. Trans ASAE 45:473–478

    Google Scholar 

  • You L, Yin J (1999) Amplification and spread of viruses in a growing plaque. J Theoret Biol 200:365–373

    Article  CAS  Google Scholar 

  • Yu CX, Irudayaraj J, Debroy C, Schmilovitch Z, Mizrach A (2004) Spectroscopic differentiation and quantification of microorganisms in apple juice. J Food Sci 69:S268–S272

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, V. (2018). Bacteriophage-Mediated Biosensors for Detection of Foodborne Pathogens. In: Singh, J., Sharma, D., Kumar, G., Sharma, N. (eds) Microbial Bioprospecting for Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-0053-0_19

Download citation

Publish with us

Policies and ethics