Skip to main content

Integrated Microwell Array Technologies for Single Cell Analysis

  • Reference work entry
  • First Online:
Handbook of Single-Cell Technologies

Abstract

Microwell arrays are an important tool for high-throughput single cell analysis, with different approaches of microwell-based studies being described over the last years. For this, a large variety of materials and microfabrication techniques has been developed for fabrication of microwells with dimensions compatible to the size of a single cell. Cells can be administered to the microwell array by manual pipetting or in an automated fashion by microfluidics, after which they can passively sediment inside the microwells. To increase cell docking efficiency, active seeding methods such as centrifugation or dielectrophoresis can be integrated. Furthermore, several techniques can be combined with microwell arrays for targeted single cell manipulation in a microwell, such as optical tweezers or a micromanipulator. The versatility of these microwell-based single cell analyses has enabled to study different cell types, ranging from bacteria to yeast and human cells with spatiotemporal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adalsteinsson VA, Tahirova N, Tallapragada N, Yao X, Campion L, Angelini A, Douce TB, Huang C, Bowman B, Williamson CA, Kwon DS, Wittrup KD, Love JC (2013) Single cells from human primary colorectal tumors exhibit polyfunctional heterogeneity in secretions of ELR+ CXC chemokines. Integr Biol 5(10):1272–1281

    Article  Google Scholar 

  • Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of viruses and bacteria. Science 235(4795):1517–1520

    Article  Google Scholar 

  • Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23(6):690–618

    Article  Google Scholar 

  • Bocchi M, Rambelli L, Faenza A, Giulianelli L, Pecorari N, Duqi E, Gallois JC, Guerrieri R (2012) Inverted open microwells for cell trapping, cell aggregate formation and parallel recovery of live cells. Lab Chip 12(17):3168–3176

    Article  Google Scholar 

  • Bradshaw EM, Kent SC, Tripuraneni V, Orban T, Ploegh HL, Hafler DA, Love JC (2008) Concurrent detection of secreted products from human lymphocytes by microengraving: cytokines and antigen-reactive antibodies. Clin Immunol 129(1):10–18

    Article  Google Scholar 

  • Cai W, Chiu YJ, Ramakrishnan V, Tsai Y, Chen C, Lo YH (2018) A single-cell translocation and secretion assay (TransSeA). Lab Chip 18(20):3154–3162

    Article  Google Scholar 

  • Charnley M, Textor M, Khademhosseini A, Lutolf MP (2009) Integration column : microwell arrays for mammalian cell culture. Integr Biol 1(11–12):625–634

    Article  Google Scholar 

  • Chen S, Shamsi MH (2017) Biosensors-on-chip: a topical review. J Micromech Microeng 27:1–15

    Article  Google Scholar 

  • Chin VI, Taupin P, Sanga S, Scheel J, Gage FH, Bhatia SN (2004) Microfabricated platform for studying stem cell fates. Biotechnol Bioeng 88(3):399–315

    Article  Google Scholar 

  • Chiou PY, Ohta AT, Wu MC (2005) Massively parallel manipulation of single cells and microparticles using optical images. Nature 436(7049):370–372

    Article  Google Scholar 

  • Choi K, Ng AH, Fobel R, Wheeler AR (2012) Digital microfluidics. Annu Rev Anal Chem 5:413–440

    Article  Google Scholar 

  • Decrop D, Pardon G, Brancato L, Kil D, Zandi Shafagh R, Kokalj T, Haraldsson T, Puers R, van der Wijngaart W, Lammertyn J (2017) Single-step imprinting of femtoliter microwell arrays allows digital bioassays with attomolar limit of detection. ACS Appl Mater Interfaces 9(12):10418–10426

    Article  Google Scholar 

  • Farrell M, Beaudoin S (2012) Surface forces and protein adsorption on dextran- and polyethylene glycol-modified polydimethylsiloxane. Colloids Surf B: Biointerfaces 81(2):468–475

    Article  Google Scholar 

  • Gao D, Ding W, Nieto-Vesperinas M, Ding X, Rahman M, Zhang T, Lim C, Qiu CW (2017) Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light: Sci Appl 6(9):e17039

    Article  Google Scholar 

  • Gao D, Jin F, Zhou M, Jiang Y (2019) Recent advances in single cell manipulation and biochemical analysis on microfluidics. Analyst 144(3):766–781

    Article  Google Scholar 

  • Gierahn TM, Wadsworth MH, Hughes TK, Bryson BD, Butler A, Satija R, Fortune S, Love JC, Shalek AK (2017) Seq-well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods 14(4):395–398

    Article  Google Scholar 

  • Guo DJ, Han HM, Wang J, Xiao SJ, Dai ZD (2007) Surface-hydrophilic and protein-resistant silicone elastomers prepared by hydrosilylation of vinyl poly(ethylene glycol) on hydrosilanes-poly(dimethylsiloxane) surfaces. Colloids Surf A Physicochem Eng Asp 308(1–3):129–135

    Article  Google Scholar 

  • Guo P, Hall EW, Schirhagl R, Mukaibo H, Martin CR, Zare RN (2012) Microfluidic capture and release of bacteria in a conical nanopore array. Lab Chip 12(3):558–561

    Article  Google Scholar 

  • Han Q, Bagheri N, Bradshaw EM, Hafler DA, Lauffenburger DA, Love JC (2011) Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci 109(5):1607–1612

    Article  Google Scholar 

  • Hu P, Zhang W, Xin H, Deng G (2016) Single-cell isolation and analysis. Front Cell Dev Biol 4(116):135–182

    Google Scholar 

  • Huang L, Chen Y, Chen Y, Wu H (2005) Centrifugation-assisted single-cell trapping in a truncated cone-shaped microwell array chip for the real-time observation of cellular apoptosis. Anal Chem 87(24):12169–12176

    Article  Google Scholar 

  • Huang NT, Zhang HL, Chung MT, Seo JH, Kurabayashi K (2014) Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection. Lab Chip 14(7):1230–1245

    Article  Google Scholar 

  • Huang NT, Hwong YJ, Lai RL (2018) A microfluidic microwell device for immunomagnetic single-cell trapping. Microfluid Nanofluid 22(2):1–8

    Article  Google Scholar 

  • Hughes AJ, Spelke DP, Xu Z, Kang CC, Schaffer DV, Herr AE (2014) Single-cell western blotting. Nat Methods 11(7):749–755

    Article  Google Scholar 

  • Inamdar NK, Griffith LG, Borenstein JT (2011) Transport and shear in a microfluidic membrane bilayer device for cell culture. Biomicrofluidics 5(2):1–15

    Article  Google Scholar 

  • Jen CP, Hsiao JH, Maslov NA (2012) Single-cell chemical lysis on microfluidic chips with arrays of microwells. Sensors 12(1):347–358

    Article  Google Scholar 

  • Jin A, Ozawa T, Tajir IK, Obata T, Kondo S, Kinoshita K, Kadowaki S, Takahashi K, Sugiyama T, Kishi H, Muraguchi A (2009) A rapid and efficient single-cell manipulation method for screening antigen-specific antibody-secreting cells from human peripheral blood. Nat Med 15(9):1088–1092

    Article  Google Scholar 

  • Kang DH, Kim HN, Kim P, Suh KY (2014) Poly(ethylene glycol) (PEG) microwells in microfluidics: fabrication methods and applications. Biochip J 8(4):241–253

    Article  Google Scholar 

  • Karp JM, Yeh J, Eng G, Fukuda J, Blumling J, Suh KY, Cheng J, Mahdavi A, Borenstein J, Langer R, Khademhosseini A (2007) Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip 7(6):786–794

    Article  Google Scholar 

  • Ke LY, Kuo ZK, Chen YS, Yeh TY, Dong M, Tseng HW, Liu CH (2017) Cancer immunotherapy μ-environment LabChip: taking advantage of optoelectronic tweezers. Lab Chip 18(1):106–114

    Article  Google Scholar 

  • Kim SH, Yamamoto T, Fourmy D, Fujii T (2011a) An electroactive microwell array for trapping and lysing single-bacterial cells. Biomicrofluidics 5(2):1–7

    Article  Google Scholar 

  • Kim SH, Yamamoto T, Fourmy D, Fujii T (2011b) Electroactive microwell arrays for highly efficient single-cell trapping and analysis. Small 7(22):3239–3247

    Article  Google Scholar 

  • Kovac JR, Voldman J (2007) Intuitive, image-based cell sorting using optofluidic cell sorting. Anal Chem 79(24):9321–9330

    Article  Google Scholar 

  • Kumar PT, Vriens K, Cornaglia M, Gijs M, Kokalj T, Thevissen K, Geeraerd A, Cammue BP, Puers R, Lammertyn J (2015) Digital microfluidics for time-resolved cytotoxicity studies on single non-adherent yeast cells. Lab Chip 15(8):1852–1860

    Article  Google Scholar 

  • Lecault V, Vaninsberghe M, Sekulovic S, Knapp DJ, Wohrer S, Bowden W, Viel F, McLaughlin T, Jarandehei A, Miller M, Falconnet D, White AK, Kent DG, Copley MR, Taghipour F, Eaves CJ, Humphries RK, Piret JM, Hansen CL (2011) High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat Methods 8(7):581–586

    Article  Google Scholar 

  • Lee S, Vörös J (2005) An aqueous-based surface modification of poly(dimethylsiloxane) with poly(ethylene glycol) to prevent biofouling. Langmuir 21(25):11957–11962

    Article  Google Scholar 

  • Liesener J, Reicherter M, Haist T, Tiziani HJ (2000) Multi-functional optical tweezers using computer-generated holograms. Opt Commun 185(1–3):77–82

    Article  Google Scholar 

  • Lindström S, Andersson-Svahn H (2011) Miniaturization of biological assays – overview on microwell devices for single-cell analyses. Biochim Biophys Acta 1810(3):308–316

    Article  Google Scholar 

  • Liu C, Stakenborg T, Peeters S, Lagae L (2009) Cell manipulation with magnetic particles toward microfluidic cytometry. J Appl Phys 105(10):1–11

    Article  Google Scholar 

  • Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P, Francis JM, Zhang CZ, Shalek AK, Satija R, Trombetta JJ, Lu D, Tallapragada N, Tahirova N, Kim S, Blumenstiel B, Sougnez C, Lowe A, Wong B, Auclair D, Van Allen EM, Nakabayashi M, Lis RT, Lee GS, Li T, Chabot MS, Ly A, Taplin ME, Clancy TE, Loda M, Regev A, Meyerson M, Hahn WC, Kantoff PW, Golub TR, Getz G, Boehm JS, Love JC (2014) Whole exome sequencing in circulating tumour cells provides a window into prostate cancer. Nature 32(5):479–484

    Google Scholar 

  • Love JC, Ronan JL, Grotenbreg GM, van der Veen AG, Ploegh HL (2006) A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat Biotechnol 24(6):703–707

    Article  Google Scholar 

  • Morimoto A, Mogami T, Watanabe M, Iijima K, Akiyama Y, Katayama K, Futami T, Yamamoto N, Sawada T, Koizumi F, Koh Y (2015) High-density dielectrophoretic microwell array for detection, capture, and single-cell analysis of rare tumor cells in peripheral blood. PLoS One 10(6):e0130418

    Article  Google Scholar 

  • Murphy TW, Zhang Q, Naler LB, Ma S, Lu C (2017) Recent advances in the use of microfluidic technologies for single cell analysis. Analyst 143(1):60–80

    Article  Google Scholar 

  • Ng AH, Li BB, Chamberlain MD, Wheeler AR (2015) Digital microfluidic cell culture. Annu Rev Biomed Eng 17:91–112

    Article  Google Scholar 

  • Ohta AT, Chiou PY, Jamshidi A, Hsu HY, Valley JK, Neale SL, Wu MC (2010) Optoelectronic tweezers for the manipulation of cells, microparticles, and nanoparticles. In: Kim KY (ed) Recent optical and photonic technologies. INTECH, Croatia, pp 367–388

    Google Scholar 

  • Oyama TG, Barba BJD, Hosaka Y, Taguchi M (2018) Single-step fabrication of polydimethylsiloxane microwell arrays with long-lasting hydrophilic inner surfaces. Appl Phys Lett 112:1–4

    Google Scholar 

  • Park JY, Morgan M, Sachs AN, Samorezov J, Teller R, Shen Y, Pienta KJ, Takayama S (2010) Single cell trapping in larger microwells capable of supporting cell spreading and proliferation. Microfluid Nanofluid 8(2):263–268

    Article  Google Scholar 

  • Park SM, Lee JY, Hong S, Lee SH, Dimov IK, Lee H, Suh S, Pan Q, Li K, Wu AM, Mumenthaler SM, Mallick P, Lee LP (2016) Dual transcript and protein quantification in a massive single cell array. Lab Chip 16(19):3682–3688

    Article  Google Scholar 

  • Rettig JR, Folch A (2005) Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem 77(17):5628–5634

    Article  Google Scholar 

  • Roch A, Giger S, Girotra M, Campos V, Vannini N, Naveiras O, Gobaa S, Lutolf MP (2017) Single-cell analyses identify bioengineered niches for enhanced maintenance of hematopoietic stem cells. Nat Commun 8(1):1–12

    Article  Google Scholar 

  • Saharil F, Forsberg F, Liu Y, Bettotti P, Kumar N, Niklaus F, Haraldsson T, van der Wijngaart W, Gylfason KB (2013) Dry adhesive bonding of nanoporous inorganic membranes to microfluidic devices using the OSTE(+) dual-cure polymer. J Micromech Microeng 23:1–8

    Article  Google Scholar 

  • Samiei E, Tabrizian M, Hoorfar M (2016) A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip 16(13):2376–2396

    Article  Google Scholar 

  • Shirasaki Y, Nakahara A, Shimura N, Yamagishi M, Mizuno J, Ohara O, Shoji S (2011) Single cell real time secretion assay using amorphous fluoropolymer microwell array. In: Xia S (ed) 2011 16th international solid-state sensors, actuators and microsystems conference. IEEE, Beijing, pp 755–758

    Chapter  Google Scholar 

  • Son KJ, Rahimian A, Shin DS, Siltanen C, Patel T, Revzin A (2016) Microfluidic compartments with sensing microbeads for dynamic monitoring of cytokine and exosome release from single cells. Analyst 141(2):679–688

    Article  Google Scholar 

  • Swennenhuis JF, Tibbe AG, Stevens M, Katika MR, van Dalum J, Tong HD, van Rijn CJ, Terstappen LW (2014) Self-seeding microwell chip for the isolation and characterization of single cells. Lab Chip 15(14):3039–3046

    Article  Google Scholar 

  • Tripodi L, Ven K, Kil D, Rutten I, Puers R, Lammertyn J (2018) Teflon-on-glass molding enables high-throughput fabrication of hydrophilic-in-hydrophobic microwells for bead-based digital bioassays. Materials 11(12):1–13

    Google Scholar 

  • Tsioris K, Gupta NT, Ogunniyi AO, Zimnisky RM, Qian F, Yao Y, Wang X, Stern JN, Chari R, Briggs AW, Clouser CR, Vigneault F, Church GM, Garcia MN, Murray KO, Montgomery RR, Kleinstein SH, Love JC (2015) Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing. Integr Biol 7(12):1587–1597

    Article  Google Scholar 

  • Tsuda R, Ozawa T, Kobayashi E, Hamana H, Taki H, Tobe K, Sugiyama E, Iwamoto M, Imura J, Kishi H, Muraguchi A (2015) Monoclonal antibody against citrullinated peptides obtained from rheumatoid arthritis patients reacts with numerous citrullinated microbial and food proteins. Arthritis Rheumatol 67(8):2020–2031

    Article  Google Scholar 

  • Ven K, Vanspauwen B, Pérez-Ruiz E, Leirs K, Decrop D, Gerstmans H, Spasic D, Lammertyn J (2018) Target confinement in small reaction volumes using microfluidic technologies: a smart approach for single-entity detection and analysis. ACS Sensors 3(2):264–284

    Article  Google Scholar 

  • Vriens K, Kumar PT, Struyfs C, Cools TL, Spincemaille P, Kokalj T, Sampaio-Marques B, Ludovico P, Lammertyn J, Cammue BPA, Thevissen K (2017) Increasing the fungicidal action of amphotericin B by inhibiting the nitric oxide-dependent tolerance pathway. Oxidative Med Cell Longev 2017:1–17

    Article  Google Scholar 

  • Wang X, Chen S, Chow YT, Kong CW, Li RA, Sun D (2013a) A microengineered cell fusion approach with combined optical tweezers and microwell array technologies. RSC Adv 3:23589–23595

    Article  Google Scholar 

  • Wang X, Gou X, Chen S, Yan X, Sun D (2013b) Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition. J Micromech Microeng 23(7):1–12

    Article  Google Scholar 

  • Welch JD, Williams LA, DiSalvo M, Brandt AT, Marayati R, Sims CE, Allbritton NL, Prins JF, Yeh JJ, Jones CD (2016) Selective single cell isolation for genomics using microraft arrays. Nucleic Acids Res 44(17):8292–8201

    Article  Google Scholar 

  • Witters D, Knez K, Ceyssens F, Puers R, Lammertyn J (2013) Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab Chip 13(11):2047–2054

    Article  Google Scholar 

  • Yoshimura Y, Tomita M, Mizutani F, Yasukawa T (2014) Cell pairing using microwell array electrodes based on dielectrophoresis. Anal Chem 86(14):6818–6822

    Article  Google Scholar 

  • Yuan J, Sims A (2016) An automated microwell platform for large-scale single cell RNA-seq. Sci Rep 6:1–10

    Article  Google Scholar 

  • Zhang P, Zhang J, Bian S, Chen Z, Hu Y, Hu R, Li J, Cheng Y, Zhang X, Zhou Y, Chen X, Liu P (2016) High-throughput superhydrophobic microwell arrays for investigating multifactorial stem cell niches. Lab Chip 16(16):2996–2906

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen Lammertyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Breukers, J. et al. (2022). Integrated Microwell Array Technologies for Single Cell Analysis. In: Santra, T.S., Tseng, FG. (eds) Handbook of Single-Cell Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-8953-4_21

Download citation

Publish with us

Policies and ethics