Skip to main content

Age-Related Macular Degeneration

  • Chapter
  • First Online:
Vitreoretinal Disorders

Part of the book series: Current Practices in Ophthalmology ((CUPROP))

  • 610 Accesses

Abstract

Age-related macular degeneration (AMD) is one of the major causes of vision loss in the elderly, manifesting as either nonexudative “dry” or exudative “wet” AMD. Although the advent of anti-vascular endothelial growth factor (anti-VEGF) therapies have revolutionized the management of exudative AMD, little is known about the pathogenesis of early AMD, and treatment options are lacking for advanced nonexudative AMD, known as geographic atrophy. Various innovations in recent years, including novel screening methods, imaging techniques, new therapies, and drug delivery devices, are changing the way we manage this previously blinding condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Congdon N, O’Colmain B, Klaver CC, Klein R, Munoz B, Friedman DS, et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol. 2004;122(4):477–85.

    Article  PubMed  Google Scholar 

  2. Coleman HR, Chan CC, Ferris FL 3rd, Chew EY. Age-related macular degeneration. Lancet. 2008;372(9652):1835–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Klein R, Klein BE, Jensen SC, Meuer SM. The five-year incidence and progression of age-related maculopathy: the beaver dam eye study. Ophthalmology. 1997;104(1):7–21.

    Article  PubMed  CAS  Google Scholar 

  4. Smith W, Assink J, Klein R, Mitchell P, Klaver CC, Klein BE, et al. Risk factors for age-related macular degeneration: pooled findings from three continents. Ophthalmology. 2001;108(4):697–704.

    Article  PubMed  CAS  Google Scholar 

  5. Curcio CA, Johnson M, Huang JD, Rudolf M. Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res. 2009;28(6):393–422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K. Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci. 2016;73(9):1765–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Curcio CA, Messinger JD, Sloan KR, McGwin G, Medeiros NE, Spaide RF. Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model. Retina. 2013;33(2):265–76.

    Article  PubMed  Google Scholar 

  8. Finger RP, Chong E, McGuinness MB, Robman LD, Aung KZ, Giles G, et al. Reticular Pseudodrusen and their association with age-related macular degeneration: the Melbourne collaborative cohort study. Ophthalmology. 2016;123(3):599–608.

    Article  PubMed  Google Scholar 

  9. Finger RP, Wu Z, Luu CD, Kearney F, Ayton LN, Lucci LM, et al. Reticular pseudodrusen: a risk factor for geographic atrophy in fellow eyes of individuals with unilateral choroidal neovascularization. Ophthalmology. 2014;121(6):1252–6.

    Article  PubMed  Google Scholar 

  10. Ellabban AA, Tsujikawa A, Matsumoto A, Yamashiro K, Oishi A, Ooto S, et al. Macular choroidal thickness measured by swept source optical coherence tomography in eyes with inferior posterior staphyloma. Invest Ophthalmol Vis Sci. 2012;53(12):7735–45.

    Article  PubMed  Google Scholar 

  11. Davis MD, Gangnon RE, Lee LY, Hubbard LD, Klein BE, Klein R, et al. The age-related eye disease study severity scale for age-related macular degeneration: AREDS report no. 17. Arch Ophthalmol. 2005;123(11):1484–98.

    Article  PubMed  Google Scholar 

  12. Age-Related Eye Disease Study Research G. The age-related eye disease study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: the age-related eye disease study report number 6. Am J Ophthalmol. 2001;132(5):668–81.

    Article  Google Scholar 

  13. Ferris FL, Davis MD, Clemons TE, Lee LY, Chew EY, Lindblad AS, et al. A simplified severity scale for age-related macular degeneration: AREDS report no. 18. Arch Ophthalmol. 2005;123(11):1570–4.

    Article  PubMed  Google Scholar 

  14. Age-Related Eye Disease Study Research. G. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001;119(10):1417–36.

    Article  Google Scholar 

  15. The Alpha-Tocopherol BCCPSG. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med. 1994;330(15):1029–35.

    Article  Google Scholar 

  16. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med. 1996;334(18):1150–5.

    Article  PubMed  CAS  Google Scholar 

  17. Age-Related Eye Disease Study 2 Research G. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the age-related eye disease study 2 (AREDS2) randomized clinical trial. JAMA. 2013;309(19):2005–15.

    Article  CAS  Google Scholar 

  18. Ying GS, Huang J, Maguire MG, Jaffe GJ, Grunwald JE, Toth C, et al. Baseline predictors for one-year visual outcomes with ranibizumab or bevacizumab for neovascular age-related macular degeneration. Ophthalmology. 2013;120(1):122–9.

    Article  PubMed  Google Scholar 

  19. Lim JH, Wickremasinghe SS, Xie J, Chauhan DS, Baird PN, Robman LD, et al. Delay to treatment and visual outcomes in patients treated with anti-vascular endothelial growth factor for age-related macular degeneration. Am J Ophthalmol. 2012;153(4):678–86. e1–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Faes L, Bodmer NS, Bachmann LM, Thiel MA, Schmid MK. Diagnostic accuracy of the Amsler grid and the preferential hyperacuity perimetry in the screening of patients with age-related macular degeneration: systematic review and meta-analysis. Eye (Lond). 2014;28(7):788–96.

    Article  CAS  Google Scholar 

  21. Wall M, May DR. Threshold Amsler grid testing in maculopathies. Ophthalmology. 1987;94(9):1126–33.

    Article  PubMed  CAS  Google Scholar 

  22. Robison CD, Jivrajka RV, Bababeygy SR, Fink W, Sadun AA, Sebag J. Distinguishing wet from dry age-related macular degeneration using three-dimensional computer-automated threshold Amsler grid testing. Br J Ophthalmol. 2011;95(10):1419–23.

    Article  PubMed  Google Scholar 

  23. Goldstein M, Loewenstein A, Barak A, Pollack A, Bukelman A, Katz H, et al. Results of a multicenter clinical trial to evaluate the preferential hyperacuity perimeter for detection of age-related macular degeneration. Retina. 2005;25(3):296–303.

    Article  PubMed  Google Scholar 

  24. Group AHRS, Chew EY, Clemons TE, Bressler SB, Elman MJ, Danis RP, et al. Randomized trial of a home monitoring system for early detection of choroidal neovascularization home monitoring of the eye (HOME) study. Ophthalmology. 2014;121(2):535–44.

    Article  Google Scholar 

  25. Wittenborn JS, Clemons T, Regillo C, Rayess N, Liffmann Kruger D, Rein D. Economic evaluation of a home-based age-related macular degeneration monitoring system. JAMA Ophthalmol. 2017;135(5):452–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang YZ, Wilson E, Locke KG, Edwards AO. Shape discrimination in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2002;43(6):2055–62.

    PubMed  Google Scholar 

  27. Wang YZ, He YG, Mitzel G, Zhang S, Bartlett M. Handheld shape discrimination hyperacuity test on a mobile device for remote monitoring of visual function in maculopathy. Invest Ophthalmol Vis Sci. 2013;54(8):5497–505.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Loewenstein A, Malach R, Goldstein M, Leibovitch I, Barak A, Baruch E, et al. Replacing the Amsler grid: a new method for monitoring patients with age-related macular degeneration. Ophthalmology. 2003;110(5):966–70.

    Article  PubMed  Google Scholar 

  29. Mohaghegh N, Zadeh EG, Magierowski S. Wearable diagnostic system for age-related macular degeneration. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:6006–9.

    CAS  Google Scholar 

  30. Howard KP, Klein BE, Lee KE, Klein R. Measures of body shape and adiposity as related to incidence of age-related eye diseases: observations from the beaver dam eye study. Invest Ophthalmol Vis Sci. 2014;55(4):2592–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ghaem Maralani H, Tai BC, Wong TY, Tai ES, Li J, Wang JJ, et al. Metabolic syndrome and risk of age-related macular degeneration. Retina. 2015;35(3):459–66.

    Article  PubMed  CAS  Google Scholar 

  32. Fritsche LG, Igl W, Bailey JN, Grassmann F, Sengupta S, Bragg-Gresham JL, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet. 2016;48(2):134–43.

    Article  PubMed  CAS  Google Scholar 

  33. Haddad S, Chen CA, Santangelo SL, Seddon JM. The genetics of age-related macular degeneration: a review of progress to date. Surv Ophthalmol. 2006;51(4):316–63.

    Article  PubMed  Google Scholar 

  34. Shaw PX, Stiles T, Douglas C, Ho D, Fan W, Du H, et al. Oxidative stress, innate immunity, and age-related macular degeneration. AIMS Mol Sci. 2016;3(2):196–221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Yu Y, Reynolds R, Rosner B, Daly MJ, Seddon JM. Prospective assessment of genetic effects on progression to different stages of age-related macular degeneration using multistate Markov models. Invest Ophthalmol Vis Sci. 2012;53(3):1548–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Klein ML, Francis PJ, Rosner B, Reynolds R, Hamon SC, Schultz DW, et al. CFH and LOC387715/ARMS2 genotypes and treatment with antioxidants and zinc for age-related macular degeneration. Ophthalmology. 2008;115(6):1019–25.

    Article  PubMed  Google Scholar 

  37. Awh CC, Lane AM, Hawken S, Zanke B, Kim IK. CFH and ARMS2 genetic polymorphisms predict response to antioxidants and zinc in patients with age-related macular degeneration. Ophthalmology. 2013;120(11):2317–23.

    Article  PubMed  Google Scholar 

  38. Awh CC, Zanke B, Kustra R. Progression from no AMD to intermediate AMD as influenced by antioxidant treatment and genetic risk: an analysis of data from the age-related eye disease study cataract trial. J Vit Retin Dis. 2017;1(1):45–51.

    Google Scholar 

  39. Chew EY, Klein ML, Clemons TE, Agron E, Ratnapriya R, Edwards AO, et al. No clinically significant association between CFH and ARMS2 genotypes and response to nutritional supplements: AREDS report number 38. Ophthalmology. 2014;121(11):2173–80.

    Article  PubMed  Google Scholar 

  40. Chew EY, Klein ML, Clemons TE, Agron E, Abecasis GR. Genetic testing in persons with age-related macular degeneration and the use of the AREDS supplements: to test or not to test? Ophthalmology. 2015;122(1):212–5.

    Article  PubMed  Google Scholar 

  41. Seddon JM, Silver RE, Rosner B. Response to AREDS supplements according to genetic factors: survival analysis approach using the eye as the unit of analysis. Br J Ophthalmol. 2016;100(12):1731–7.

    Article  PubMed  Google Scholar 

  42. Holz FG, Strauss EC, Schmitz-Valckenberg S, van Lookeren Campagne M. Geographic atrophy: clinical features and potential therapeutic approaches. Ophthalmology. 2014;121(5):1079–91.

    Article  PubMed  Google Scholar 

  43. Chakravarthy U, Harding SP, Rogers CA, Downes SM, Lotery AJ, Culliford LA, et al. Alternative treatments to inhibit VEGF in age-related choroidal neovascularisation: 2-year findings of the IVAN randomised controlled trial. Lancet. 2013;382(9900):1258–67.

    Article  PubMed  CAS  Google Scholar 

  44. Rosenfeld PJ, Shapiro H, Tuomi L, Webster M, Elledge J, Blodi B, et al. Characteristics of patients losing vision after 2 years of monthly dosing in the phase III ranibizumab clinical trials. Ophthalmology. 2011;118(3):523–30.

    Article  PubMed  Google Scholar 

  45. Grunwald JE, Pistilli M, Ying GS, Maguire MG, Daniel E, Martin DF, et al. Growth of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2015;122(4):809–16.

    Article  PubMed  Google Scholar 

  46. Mao X, Fang W, Liu Q. An emerging role of Alu RNA in geographic atrophy pathogenesis: the implication for novel therapeutic strategies. Discov Med. 2016;22(123):337–49.

    PubMed  Google Scholar 

  47. Bhutto IA, McLeod DS, Jing T, Sunness JS, Seddon JM, Lutty GA. Increased choroidal mast cells and their degranulation in age-related macular degeneration. Br J Ophthalmol. 2016;100(5):720–6.

    Article  PubMed  Google Scholar 

  48. Sunness JS, Rubin GS, Broman A, Applegate CA, Bressler NM, Hawkins BS. Low luminance visual dysfunction as a predictor of subsequent visual acuity loss from geographic atrophy in age-related macular degeneration. Ophthalmology. 2008;115(9):1480–8. e1–2.

    Article  PubMed  Google Scholar 

  49. Sunness JS, Rubin GS, Applegate CA, Bressler NM, Marsh MJ, Hawkins BS, et al. Visual function abnormalities and prognosis in eyes with age-related geographic atrophy of the macula and good visual acuity. Ophthalmology. 1997;104(10):1677–91.

    Article  PubMed  CAS  Google Scholar 

  50. Meleth AD, Mettu P, Agron E, Chew EY, Sadda SR, Ferris FL, et al. Changes in retinal sensitivity in geographic atrophy progression as measured by microperimetry. Invest Ophthalmol Vis Sci. 2011;52(2):1119–26.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Owsley C, Jackson GR, Cideciyan AV, Huang Y, Fine SL, Ho AC, et al. Psychophysical evidence for rod vulnerability in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2000;41(1):267–73.

    PubMed  CAS  Google Scholar 

  52. Legge GE, Ross JA, Luebker A, LaMay JM. Psychophysics of reading. VIII. The Minnesota low-vision reading test. Optom Vis Sci. 1989;66(12):843–53.

    Article  PubMed  CAS  Google Scholar 

  53. Mangione CM, Lee PP, Pitts J, Gutierrez P, Berry S, Hays RD. Psychometric properties of the National eye Institute visual function questionnaire (NEI-VFQ). NEI-VFQ field test investigators. Arch Ophthalmol. 1998;116(11):1496–504.

    Article  PubMed  CAS  Google Scholar 

  54. Mangione CM, Lee PP, Gutierrez PR, Spritzer K, Berry S, Hays RD, et al. Development of the 25-item National eye Institute visual function questionnaire. Arch Ophthalmol. 2001;119(7):1050–8.

    Article  PubMed  CAS  Google Scholar 

  55. Sadda SR, Chakravarthy U, Birch DG, Staurenghi G, Henry EC, Brittain C. Clinical endpoints for the study of geographic atrophy secondary to age-related macular degeneration. Retina. 2016;36(10):1806–22.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Li J, Tso MO, Lam TT. Reduced amplitude and delayed latency in foveal response of multifocal electroretinogram in early age related macular degeneration. Br J Ophthalmol. 2001;85(3):287–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wu Z, Ayton LN, Guymer RH, Luu CD. Relationship between the second reflective band on optical coherence tomography and multifocal electroretinography in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2013;54(4):2800–6.

    Article  PubMed  Google Scholar 

  58. Wu Z, Ayton LN, Makeyeva G, Guymer RH, Luu CD. Impact of reticular pseudodrusen on microperimetry and multifocal electroretinography in intermediate age-related macular degeneration. Invest Ophthalmol Vis Sci. 2015;56(3):2100–6.

    Article  PubMed  Google Scholar 

  59. Schaal KB, Rosenfeld PJ, Gregori G, Yehoshua Z, Feuer WJ. Anatomic clinical trial endpoints for nonexudative age-related macular degeneration. Ophthalmology. 2016;123(5):1060–79.

    Article  PubMed  Google Scholar 

  60. Holz FG, Bindewald-Wittich A, Fleckenstein M, Dreyhaupt J, Scholl HP, Schmitz-Valckenberg S, et al. Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. Am J Ophthalmol. 2007;143(3):463–72.

    Article  PubMed  Google Scholar 

  61. Schmitz-Valckenberg S, Brinkmann CK, Alten F, Herrmann P, Stratmann NK, Gobel AP, et al. Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011;52(10):7640–6.

    Article  PubMed  Google Scholar 

  62. Yehoshua Z, Rosenfeld PJ, Albini TA. Current clinical trials in dry AMD and the definition of appropriate clinical outcome measures. Semin Ophthalmol. 2011;26(3):167–80.

    Article  PubMed  Google Scholar 

  63. Sunness JS, Margalit E, Srikumaran D, Applegate CA, Tian Y, Perry D, et al. The long-term natural history of geographic atrophy from age-related macular degeneration: enlargement of atrophy and implications for interventional clinical trials. Ophthalmology. 2007;114(2):271–7.

    Article  PubMed  Google Scholar 

  64. Lindblad AS, Lloyd PC, Clemons TE, Gensler GR, Ferris FL 3rd, Klein ML, et al. Change in area of geographic atrophy in the age-related eye disease study: AREDS report number 26. Arch Ophthalmol. 2009;127(9):1168–74.

    Article  PubMed  Google Scholar 

  65. Bindewald A, Bird AC, Dandekar SS, Dolar-Szczasny J, Dreyhaupt J, Fitzke FW, et al. Classification of fundus autofluorescence patterns in early age-related macular disease. Invest Ophthalmol Vis Sci. 2005;46(9):3309–14.

    Article  PubMed  Google Scholar 

  66. Scholl HP, Charbel Issa P, Walier M, Janzer S, Pollok-Kopp B, Borncke F, et al. Systemic complement activation in age-related macular degeneration. PLoS One. 2008;3(7):e2593.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Garcia-Arumi J, Corcostegui B, Tallada N. Subretinal membranes in proliferative vitreoretinopathy. An immunohistochemical study. Retina. 1992;12(3 Suppl):S55–9.

    Article  PubMed  CAS  Google Scholar 

  68. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, et al. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A. 2002;99(23):14682–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Yehoshua Z, de Amorim Garcia Filho CA, Nunes RP, Gregori G, Penha FM, Moshfeghi AA, et al. Systemic complement inhibition with eculizumab for geographic atrophy in age-related macular degeneration: the COMPLETE study. Ophthalmology. 2014;121(3):693–701.

    Article  PubMed  Google Scholar 

  70. Volz C, Pauly D. Antibody therapies and their challenges in the treatment of age-related macular degeneration. Eur J Pharm Biopharm. 2015;95(i):158–72.

    Article  PubMed  CAS  Google Scholar 

  71. Kuppermann BD, Patel S, Boyer S, et al. Brimonidine drug delivery system generation 1 in patients with geographic atrophy: post hoc analysis of a phase 2 study. Association for Research in Vision and Ophthalmology annual meeting; May 7–11; Baltimore 2017.

    Google Scholar 

  72. Kaneko H, Dridi S, Tarallo V, Gelfand BD, Fowler BJ, Cho WG, et al. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature. 2011;471(7338):325–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Tarallo V, Hirano Y, Gelfand BD, Dridi S, Kerur N, Kim Y, et al. DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell. 2012;149(4):847–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kim Y, Tarallo V, Kerur N, Yasuma T, Gelfand BD, Bastos-Carvalho A, et al. DICER1/Alu RNA dysmetabolism induces Caspase-8-mediated cell death in age-related macular degeneration. Proc Natl Acad Sci U S A. 2014;111(45):16082–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells. 2006;8(3):189–99.

    Article  PubMed  CAS  Google Scholar 

  76. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16.

    Article  PubMed  Google Scholar 

  77. Song WK, Park KM, Kim HJ, Lee JH, Choi J, Chong SY, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Reports. 2015;4(5):860–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Clinical Trial of Autologous Intravitreal Bone-marrow CD34+ Stem Cells for Retinopathy 2012. https://clinicaltrials.gov/ct2/show/NCT01736059.

  79. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–46.

    Article  PubMed  CAS  Google Scholar 

  80. Kuriyan AE, Albini TA, Townsend JH, Rodriguez M, Pandya HK, Leonard RE 2nd, et al. Vision loss after Intravitreal injection of autologous “stem cells” for AMD. N Engl J Med. 2017;376(11):1047–53.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Duncan JL, Richards TP, Arditi A, da Cruz L, Dagnelie G, Dorn JD, et al. Improvements in vision-related quality of life in blind patients implanted with the Argus II Epiretinal prosthesis. Clin Exp Optom. 2017;100(2):144–50.

    Article  PubMed  Google Scholar 

  82. Dagnelie G, Christopher P, Arditi A, da Cruz L, Duncan JL, Ho AC, et al. Performance of real-world functional vision tasks by blind subjects improves after implantation with the Argus(R) II retinal prosthesis system. Clin Exp Ophthalmol. 2017;45(2):152–9.

    Article  PubMed  Google Scholar 

  83. Stingl K, Bartz-Schmidt KU, Besch D, Chee CK, Cottriall CL, Gekeler F, et al. Subretinal visual implant alpha IMS—Clinical trial interim report. Vis Res. 2015;111(Pt B):149–60.

    Article  PubMed  Google Scholar 

  84. Ambati J, Fowler BJ. Mechanisms of age-related macular degeneration. Neuron. 2012;75(1):26–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Zarbin MA. Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol. 2004;122(4):598–614.

    Article  PubMed  Google Scholar 

  86. Chan-Ling T, Koina ME, McColm JR, Dahlstrom JE, Bean E, Adamson S, et al. Role of CD44+ stem cells in mural cell formation in the human choroid: evidence of vascular instability due to limited pericyte ensheathment. Invest Ophthalmol Vis Sci. 2011;52(1):399–410.

    Article  PubMed  CAS  Google Scholar 

  87. Gelfand BD, Ambati J. A revised hemodynamic theory of age-related macular degeneration. Trends Mol Med. 2016;22(8):656–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Subfoveal neovascular lesions in age-related macular degeneration. Guidelines for evaluation and treatment in the macular photocoagulation study. Macular Photocoagulation Study Group. Arch Ophthalmol. 1991;109(9):1242–57.

    Article  Google Scholar 

  89. Holz FG, Sadda SR, Staurenghi G, Lindner M, Bird AC, Blodi BA, et al. Imaging protocols in clinical studies in advanced age-related macular degeneration: recommendations from classification of atrophy consensus meetings. Ophthalmology. 2017;124(4):464–78.

    Article  PubMed  Google Scholar 

  90. Jaffe GJ, Martin DF, Toth CA, Daniel E, Maguire MG, Ying GS, et al. Macular morphology and visual acuity in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2013;120(9):1860–70.

    Article  PubMed  Google Scholar 

  91. Veerappan M, El-Hage-Sleiman AM, Tai V, Chiu SJ, Winter KP, Stinnett SS, et al. Optical coherence tomography reflective Drusen substructures predict progression to geographic atrophy in age-related macular degeneration. Ophthalmology. 2016;123(12):2554–70.

    Article  PubMed  Google Scholar 

  92. Spaide RF. Outer retinal atrophy after regression of subretinal drusenoid deposits as a newly recognized form of late age-related macular degeneration. Retina. 2013;33(9):1800–8.

    Article  PubMed  Google Scholar 

  93. Shin HJ, Chung H, Kim HC. Association between foveal microstructure and visual outcome in age-related macular degeneration. Retina. 2011;31(8):1627–36.

    Article  PubMed  Google Scholar 

  94. Folgar FA, Chow JH, Farsiu S, Wong WT, Schuman SG, O’Connell RV, et al. Spatial correlation between hyperpigmentary changes on color fundus photography and hyperreflective foci on SDOCT in intermediate AMD. Invest Ophthalmol Vis Sci. 2012;53(8):4626–33.

    Article  PubMed  Google Scholar 

  95. de Carlo TE, Bonini Filho MA, Chin AT, Adhi M, Ferrara D, Baumal CR, et al. Spectral-domain optical coherence tomography angiography of choroidal neovascularization. Ophthalmology. 2015;122(6):1228–38.

    Article  PubMed  Google Scholar 

  96. Huang D, Jia Y, Rispoli M, Tan O, Lumbroso B. Optical coherence tomography angiography of time course of choroidal neovascularization in response to anti-Angiogenic treatment. Retina. 2015;35(11):2260–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Spaide RF. Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization. Am J Ophthalmol. 2015;160(1):6–16.

    Article  PubMed  Google Scholar 

  98. Argon laser photocoagulation for neovascular maculopathy. Five-year results from randomized clinical trials. Macular Photocoagulation Study Group. Arch Ophthalmol. 1991;109(8):1109–14.

    Article  Google Scholar 

  99. Bressler NM. Treatment of Age-Related Macular Degeneration with Photodynamic Therapy Study G. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials-tap report 2. Arch Ophthalmol. 2001;119(2):198–207.

    PubMed  CAS  Google Scholar 

  100. Verteporfin In Photodynamic Therapy Study G. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization—verteporfin in photodynamic therapy report 2. Am J Ophthalmol. 2001;131(5):541–60.

    Article  Google Scholar 

  101. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219(4587):983–5.

    Article  PubMed  CAS  Google Scholar 

  102. Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR, Group VISiONCT. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med. 2004;351(27):2805–16.

    Article  PubMed  CAS  Google Scholar 

  103. Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1432–44.

    Article  PubMed  CAS  Google Scholar 

  104. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–31.

    Article  PubMed  CAS  Google Scholar 

  105. Comparison of Age-related Macular Degeneration Treatments Trials Research G, Martin DF, Maguire MG, Fine SL, Ying GS, Jaffe GJ, et al. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology. 2012;119(7):1388–98.

    Article  Google Scholar 

  106. Chakravarthy U, Harding SP, Rogers CA, Downes S, Lotery AJ, Dakin HA, et al. A randomised controlled trial to assess the clinical effectiveness and cost-effectiveness of alternative treatments to inhibit VEGF in age-related choroidal neovascularisation (IVAN). Health Technol Assess. 2015;19(78):1–298.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, et al. VEGF-trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A. 2002;99(17):11393–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, Nguyen QD, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012;119(12):2537–48.

    Article  PubMed  Google Scholar 

  109. Schmidt-Erfurth U, Kaiser PK, Korobelnik JF, Brown DM, Chong V, Nguyen QD, et al. Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies. Ophthalmology. 2014;121(1):193–201.

    Article  PubMed  Google Scholar 

  110. Regillo CD, Brown DM, Abraham P, Yue H, Ianchulev T, Schneider S, et al. Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER study year 1. Am J Ophthalmol. 2008;145(2):239–48.

    Article  PubMed  CAS  Google Scholar 

  111. Abraham P, Yue H, Wilson L. Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER study year 2. Am J Ophthalmol. 2010;150(3):315–24. e1.

    Article  PubMed  CAS  Google Scholar 

  112. Schmidt-Erfurth U, Eldem B, Guymer R, Korobelnik JF, Schlingemann RO, Axer-Siegel R, et al. Efficacy and safety of monthly versus quarterly ranibizumab treatment in neovascular age-related macular degeneration: the EXCITE study. Ophthalmology. 2011;118(5):831–9.

    Article  PubMed  Google Scholar 

  113. Fung AE, Lalwani GA, Rosenfeld PJ, Dubovy SR, Michels S, Feuer WJ, et al. An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration. Am J Ophthalmol. 2007;143(4):566–83.

    Article  PubMed  CAS  Google Scholar 

  114. Holz FG, Amoaku W, Donate J, Guymer RH, Kellner U, Schlingemann RO, et al. Safety and efficacy of a flexible dosing regimen of ranibizumab in neovascular age-related macular degeneration: the SUSTAIN study. Ophthalmology. 2011;118(4):663–71.

    Article  PubMed  Google Scholar 

  115. Busbee BG, Ho AC, Brown DM, Heier JS, Suner IJ, Li Z, et al. Twelve-month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular age-related macular degeneration. Ophthalmology. 2013;120(5):1046–56.

    Article  PubMed  Google Scholar 

  116. Rufai SR, Almuhtaseb H, Paul RM, Stuart BL, Kendrick T, Lee H, et al. A systematic review to assess the ‘treat-and-extend’ dosing regimen for neovascular age-related macular degeneration using ranibizumab. Eye (Lond). 2017;31(9):1337–44.

    Article  CAS  Google Scholar 

  117. Chin-Yee D, Eck T, Fowler S, Hardi A, Apte RS. A systematic review of as needed versus treat and extend ranibizumab or bevacizumab treatment regimens for neovascular age-related macular degeneration. Br J Ophthalmol. 2016;100(7):914–7.

    Article  PubMed  Google Scholar 

  118. Berg K, Hadzalic E, Gjertsen I, Forsaa V, Berger LH, Kinge B, et al. Ranibizumab or bevacizumab for neovascular age-related macular degeneration according to the Lucentis compared to Avastin study treat-and-extend protocol: two-year results. Ophthalmology. 2016;123(1):51–9.

    Article  PubMed  Google Scholar 

  119. Boyer DS, Heier JS, Brown DM, Francom SF, Ianchulev T, Rubio RG. A phase IIIb study to evaluate the safety of ranibizumab in subjects with neovascular age-related macular degeneration. Ophthalmology. 2009;116(9):1731–9.

    Article  PubMed  Google Scholar 

  120. Moisseiev E, Rudell J, Tieu EV, Yiu G. Effect of syringe design on the accuracy and precision of intravitreal injections of anti-VEGF agents. Curr Eye Res. 2017;42(7):1059–63.

    Article  PubMed  CAS  Google Scholar 

  121. Souied E, Nghiem-Buffet S, Leteneux C, Bayer S, Derveloy A, Sagkriotis A, et al. Ranibizumab prefilled syringes: benefits of reduced syringe preparation times and less complex preparation procedures. Eur J Ophthalmol. 2015;25(6):529–34.

    Article  PubMed  Google Scholar 

  122. Schwartz SG, Brantley MA Jr. Pharmacogenetics and age-related macular degeneration. J Ophthalmol. 2011;2011:252549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Hagstrom SA, Ying GS, Maguire MG, Martin DF, Group CR, Gibson J, et al. VEGFR2 gene polymorphisms and response to anti-vascular endothelial growth factor therapy in age-related macular degeneration. Ophthalmology. 2015;122(8):1563–8.

    Article  PubMed  Google Scholar 

  124. Hagstrom SA, Ying GS, Pauer GJ, Sturgill-Short GM, Huang J, Callanan DG, et al. Pharmacogenetics for genes associated with age-related macular degeneration in the comparison of AMD treatments trials (CATT). Ophthalmology. 2013;120(3):593–9.

    Article  PubMed  Google Scholar 

  125. Lotery AJ, Gibson J, Cree AJ, Downes SM, Harding SP, Rogers CA, et al. Pharmacogenetic associations with vascular endothelial growth factor inhibition in participants with neovascular age-related macular degeneration in the IVAN study. Ophthalmology. 2013;120(12):2637–43.

    Article  PubMed  Google Scholar 

  126. Giansanti F, Eandi CM, Virgili G. Submacular surgery for choroidal neovascularisation secondary to age-related macular degeneration. Cochrane Database Syst Rev. 2009;2:CD006931.

    Google Scholar 

  127. Ehlers JP, Maldonado R, Sarin N, Toth CA. Treatment of non-age-related macular degeneration submacular diseases with macular translocation surgery. Retina. 2011;31(7):1337–46.

    Article  PubMed  Google Scholar 

  128. Cahill MT, Mruthyunjaya P, Bowes Rickman C, Toth CA. Recurrence of retinal pigment epithelial changes after macular translocation with 360 degrees peripheral retinectomy for geographic atrophy. Arch Ophthalmol. 2005;123(7):935–8.

    Article  PubMed  Google Scholar 

  129. Toth CA, Morse LS, Hjelmeland LM, Landers MB 3rd. Fibrin directs early retinal damage after experimental subretinal hemorrhage. Arch Ophthalmol. 1991;109(5):723–9.

    Article  PubMed  CAS  Google Scholar 

  130. Avery RL, Fekrat S, Hawkins BS, Bressler NM. Natural history of subfoveal subretinal hemorrhage in age-related macular degeneration. Retina. 1996;16(3):183–9.

    Article  PubMed  CAS  Google Scholar 

  131. Yiu G, Mahmoud TH. Subretinal hemorrhage. Dev Ophthalmol. 2014;54:213–22.

    Article  PubMed  Google Scholar 

  132. Martel JN, Mahmoud TH. Subretinal pneumatic displacement of subretinal hemorrhage. JAMA Ophthalmol. 2013;131(12):1632–5.

    Article  PubMed  Google Scholar 

  133. Kim JH, Chang YS, Kim JW, Kim CG, Yoo SJ, Cho HJ. Intravitreal anti-vascular endothelial growth factor for submacular hemorrhage from choroidal neovascularization. Ophthalmology. 2014;121(4):926–35.

    Article  PubMed  Google Scholar 

  134. Mansour AM, Chhablani J, Antonios RS, Yogi R, Younis MH, Dakroub R, et al. Three-month outcome of ziv-aflibercept for exudative age-related macular degeneration. Br J Ophthalmol. 2016;100(12):1629–33.

    Article  PubMed  Google Scholar 

  135. Holz FG, Dugel PU, Weissgerber G, Hamilton R, Silva R, Bandello F, et al. Single-chain antibody fragment VEGF inhibitor RTH258 for Neovascular age-related macular degeneration: a randomized controlled study. Ophthalmology. 2016;123(5):1080–9.

    Article  PubMed  Google Scholar 

  136. Dugel PU, Jaffe GJ, Sallstig P, Warburton J, Weichselberger A, Wieland M, et al. Brolucizumab versus Aflibercept in participants with Neovascular age-related macular degeneration: a randomized trial. Ophthalmology. 2017;124(9):1296–304.

    Article  PubMed  Google Scholar 

  137. Schocket LS, Brucker AJ, Niknam RM, Grunwald JE, DuPont J, Brucker AJ. Foveolar choroidal hemodynamics in proliferative diabetic retinopathy. Int Ophthalmol. 2004;25(2):89–94.

    Article  PubMed  Google Scholar 

  138. Rasool M, Malik A, Hussain M, Haq KA, Butt K, Basit A, et al. DARPins bioengineering and its theranostic approaches: emerging trends in protein engineering. Curr Pharm Des. 2017;23(11):1610–5.

    Article  PubMed  CAS  Google Scholar 

  139. Souied EH, Devin F, Mauget-Faysse M, Kolar P, Wolf-Schnurrbusch U, Framme C, et al. Treatment of exudative age-related macular degeneration with a designed ankyrin repeat protein that binds vascular endothelial growth factor: a phase I/II study. Am J Ophthalmol. 2014;158(4):724–32. e2.

    Article  PubMed  CAS  Google Scholar 

  140. Cao J, McLeod S, Merges CA, Lutty GA. Choriocapillaris degeneration and related pathologic changes in human diabetic eyes. Arch Ophthalmol. 1998;116(5):589–97.

    Article  PubMed  CAS  Google Scholar 

  141. Humayun M, Santos A, Altamirano JC, Ribeiro R, Gonzalez R, de la Rosa A, et al. Implantable MicroPump for drug delivery in patients with diabetic macular Edema. Transl Vis Sci Technol. 2014;3(6):5.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Cohen MN. Shah, Chirag P. A look into the future: sustained anti-VEGF delivery options. Retina Times. 2016;34(5):22–3. 57

    Google Scholar 

  143. Abrishami M, Zarei-Ghanavati S, Soroush D, Rouhbakhsh M, Jaafari MR, Malaekeh-Nikouei B. Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina. 2009;29(5):699–703.

    Article  PubMed  Google Scholar 

  144. Osswald CR, Kang-Mieler JJ. Controlled and extended in vitro release of bioactive anti-vascular endothelial growth factors from a microsphere-hydrogel drug delivery system. Curr Eye Res. 2016;41(9):1216–22.

    Article  PubMed  CAS  Google Scholar 

  145. Bansal P, Garg S, Sharma Y, Venkatesh P. Posterior segment drug delivery devices: current and novel therapies in development. J Ocul Pharmacol Ther. 2016;32(3):135–44.

    Article  PubMed  CAS  Google Scholar 

  146. Kang Derwent JJ, Mieler WF. Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye. Trans Am Ophthalmol Soc. 2008;106:206–13; discussion 13–4.

    PubMed  PubMed Central  Google Scholar 

  147. Singh RP, Mathews ME, Kaufman M, Riga A. Transcleral delivery of triamcinolone acetonide and ranibizumab to retinal tissues using macroesis. Br J Ophthalmol. 2010;94(2):170–3.

    Article  PubMed  Google Scholar 

  148. Pecen PE, Kaiser PK. Current phase 1/2 research for neovascular age-related macular degeneration. Curr Opin Ophthalmol. 2015;26(3):188–93.

    Article  PubMed  Google Scholar 

  149. Connolly B, Desai A, Garcia CA, Thomas E, Gast MJ. Squalamine lactate for exudative age-related macular degeneration. Ophthalmol Clin N Am. 2006;19(3):381–91. vi.

    Google Scholar 

  150. Emerson MV, Lauer AK. Current and emerging therapies for the treatment of age-related macular degeneration. Clin Ophthalmol. 2008;2(2):377–88.

    PubMed  PubMed Central  CAS  Google Scholar 

  151. Wroblewski JJ, Hu AY. Topical Squalamine 0.2% and Intravitreal Ranibizumab 0.5 mg as combination therapy for macular Edema due to branch and central retinal vein occlusion: an open-label, randomized study. Ophthal Surg Laser Imag Retina. 2016;47(10):914–23.

    Article  Google Scholar 

  152. Cousins S. Eye drop may reform wet AMD treatment. Ophthalmol Times. 2017;42(4):4. 24

    Google Scholar 

  153. Brown DM, Michels M, Kaiser PK, Heier JS, Sy JP, Ianchulev T, et al. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology. 2009;116(1):57–65. e5.

    Article  PubMed  Google Scholar 

  154. Rezar-Dreindl S, Eibenberger K, Buehl W, Georgopoulos M, Weigert G, Krall C, et al. Role of additional dexamethasone for the management of persistent or recurrent neovascular age-related macular degeneration under ranibizumab treatment. Retina. 2017;37(5):962–70.

    Article  PubMed  CAS  Google Scholar 

  155. Kuppermann BD, Goldstein M, Maturi RK, Pollack A, Singer M, Tufail A, et al. Dexamethasone intravitreal implant as adjunctive therapy to ranibizumab in neovascular age-related macular degeneration: a Multicenter randomized controlled trial. Ophthalmologica. 2015;234(1):40–54.

    Article  PubMed  CAS  Google Scholar 

  156. Semeraro F, Russo A, Delcassi L, Romano MR, Rinaldi M, Chiosi F, et al. Treatment of exudative age-related macular degeneration with ranibizumab combined with ketorolac Eyedrops or photodynamic therapy. Retina. 2015;35(8):1547–54.

    Article  PubMed  CAS  Google Scholar 

  157. Hatz K, Schneider U, Henrich PB, Braun B, Sacu S, Prunte C. Ranibizumab plus verteporfin photodynamic therapy in neovascular age-related macular degeneration: 12 months of retreatment and vision outcomes from a randomized study. Ophthalmologica. 2015;233(2):66–73.

    Article  PubMed  CAS  Google Scholar 

  158. Kaiser PK, Boyer DS, Cruess AF, Slakter JS, Pilz S, Weisberger A, et al. Verteporfin plus ranibizumab for choroidal neovascularization in age-related macular degeneration: twelve-month results of the DENALI study. Ophthalmology. 2012;119(5):1001–10.

    Article  PubMed  Google Scholar 

  159. Si JK, Tang K, Bi HS, Guo DD, Guo JG, Du YX, et al. Combination of ranibizumab with photodynamic therapy vs ranibizumab monotherapy in the treatment of age-related macular degeneration: a systematic review and meta-analysis of randomized controlled trials. Int J Ophthalmol. 2014;7(3):541–9.

    PubMed  PubMed Central  Google Scholar 

  160. Gallemore RP, Wallsh J, Hudson HL, Ho AC, Chace R, Pearlman J. Combination verteporfin photodynamic therapy ranibizumab-dexamethasone in choroidal neovascularization due to age-related macular degeneration: results of a phase II randomized trial. Clin Ophthalmol. 2017;11:223–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97(6):512–23.

    Article  PubMed  CAS  Google Scholar 

  162. Jaffe GJ, Ciulla TA, Ciardella AP, Devin F, Dugel PU, Eandi CM, et al. Dual antagonism of PDGF and VEGF in neovascular age-related macular degeneration: a phase IIb, multicenter, randomized controlled trial. Ophthalmology. 2017;124(2):224–34.

    Article  PubMed  Google Scholar 

  163. Dunn EN, Hariprasad SM, Sheth VS. An overview of the fovista and rinucumab trials and the fate of anti-PDGF medications. Ophthalmic Surg Lasers Imaging Retina. 2017;48(2):100–4.

    Article  PubMed  Google Scholar 

  164. Lpath I. Efficacy and Safety Study of iSONEP with and without Lucentis/Avastin to Treat Age-Related Macular Degeneration (AMD) (Nexus) Bethesda, MD: National Library of Medicine; http://clinicaltrials.gov/ct2/show/NCT01414153.

  165. Ishikawa M, Jin D, Sawada Y, Abe S, Yoshitomi T. Future therapies of wet age-related macular degeneration. J Ophthalmol. 2015;2015:138070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Evans JR, Sivagnanavel V, Chong V. Radiotherapy for neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2010;5:CD004004.

    Google Scholar 

  167. Jackson TL, Chakravarthy U, Slakter JS, Muldrew A, Shusterman EM, O’Shaughnessy D, et al. Stereotactic radiotherapy for neovascular age-related macular degeneration: year 2 results of the INTREPID study. Ophthalmology. 2015;122(1):138–45.

    Article  PubMed  Google Scholar 

  168. Park SS, Daftari I, Phillips T, Morse LS. Three-year follow-up of a pilot study of ranibizumab combined with proton beam irradiation as treatment for exudative age-related macular degeneration. Retina. 2012;32(5):956–66.

    Article  PubMed  Google Scholar 

  169. Osmanovic SME, Mishra KK, et al. Phase I/II randomized study of proton beam with anti-vascular endothelial growth factor for exudative age-related macular degeneration. Ophthalmol Retina. 2017;1(3):217–26.

    Article  PubMed  Google Scholar 

  170. Constable IJ, Pierce CM, Lai CM, Magno AL, Degli-Esposti MA, French MA, et al. Phase 2a randomized clinical trial: safety and post hoc analysis of subretinal rAAV.sFLT-1 for wet age-related macular degeneration. EBioMedicine. 2016;14:168–75.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Campochiaro PA, Lauer AK, Sohn EH, Mir TA, Naylor S, Anderton MC, et al. Lentiviral vector gene transfer of Endostatin/Angiostatin for macular degeneration (GEM) study. Hum Gene Ther. 2017;28(1):99–111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Yiu G, Tieu E, Nguyen AT, Wong B, Smit-McBride Z. Genomic disruption of VEGF-A expression in human retinal pigment epithelial cells using CRISPR-Cas9 endonuclease. Invest Ophthalmol Vis Sci. 2016;57(13):5490–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Algvere PV, Gouras P, Dafgard Kopp E. Long-term outcome of RPE allografts in non-immunosuppressed patients with AMD. Eur J Ophthalmol. 1999;9(3):217–30.

    Article  PubMed  CAS  Google Scholar 

  174. Binder S, Krebs I, Hilgers RD, Abri A, Stolba U, Assadoulina A, et al. Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Invest Ophthalmol Vis Sci. 2004;45(11):4151–60.

    Article  PubMed  Google Scholar 

  175. van Meurs JC, ter Averst E, Hofland LJ, van Hagen PM, Mooy CM, Baarsma GS, et al. Autologous peripheral retinal pigment epithelium translocation in patients with subfoveal neovascular membranes. Br J Ophthalmol. 2004;88(1):110–3.

    Article  PubMed  PubMed Central  Google Scholar 

  176. MacLaren RE, Bird AC, Sathia PJ, Aylward GW. Long-term results of submacular surgery combined with macular translocation of the retinal pigment epithelium in neovascular age-related macular degeneration. Ophthalmology. 2005;112(12):2081–7.

    Article  PubMed  Google Scholar 

  177. Lappas A, Foerster AM, Weinberger AW, Coburger S, Schrage NF, Kirchhof B. Translocation of iris pigment epithelium in patients with exudative age-related macular degeneration: long-term results. Graefes Arch Clin Exp Ophthalmol. 2004;242(8):638–47.

    Article  PubMed  Google Scholar 

  178. Aisenbrey S, Lafaut BA, Szurman P, Hilgers RD, Esser P, Walter P, et al. Iris pigment epithelial translocation in the treatment of exudative macular degeneration: a 3-year follow-up. Arch Ophthalmol. 2006;124(2):183–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn Yiu M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hellman, J., Yiu, G. (2018). Age-Related Macular Degeneration. In: Yiu, G. (eds) Vitreoretinal Disorders. Current Practices in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8545-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8545-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8544-4

  • Online ISBN: 978-981-10-8545-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics