Skip to main content

A Study on the Relationship Among Several Friction-Induced Instability Mechanisms Based on Multi-point Contact Nonlinear Dynamical Friction-Induced Vibration Model

  • Conference paper
  • First Online:
Proceedings of the 19th Asia Pacific Automotive Engineering Conference & SAE-China Congress 2017: Selected Papers (SAE-China 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 486))

Included in the following conference series:

  • 2013 Accesses

Abstract

Brake noise is the hotspot in the field of automotive NVH. Till now, four main frictional squeal mechanisms for the generation of brake noise are highlighted; they are mode coupling instability theory, negative friction-velocity slope instability theory, sprag-slip motion theory, and stick-slip motion theory. However, none of them can explain various frictional squeal phenomena fully. So, it is very important to make clear the relationship among various mechanisms. A nonlinear dynamical friction-induced vibration model with two-point contact and three-degree-of-freedoms is established to explore the mechanism of frictional squeal and the relationship between several main mechanisms. Based on this model, bifurcations of friction coefficient for mode coupling are derived under zero, negative and positive friction-velocity slope conditions. According to the bifurcation friction coefficient for mode coupling and the sign of friction-velocity slope, instability characteristics are summarized in four areas. For each area, real part and imaginary part of instable mode and stick-slip motion are investigated via numerical simulation. At the same time, divergence is calculated and the existence of limit cycle is judged based on Bendixson–Dulac criterion. Based on these results, the relationship among the four mechanisms is more clearly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson FR (1939) The journal of the acoustical society of america. J Acoust Soc Am 11(1):15–20

    Article  Google Scholar 

  2. Ouyang H, Nack W, Yuan Y et al (2005) Numerical analysis of automotive disc brake squeal: a review. Int J Veh Noise Vib 1(3–4):207–231

    Article  Google Scholar 

  3. Hoffmann NP, Gaul L. Friction induced vibrations of brakes: research fields and activities (2008). SAE Technical Paper.

    Google Scholar 

  4. Kinkaid NM, O’reilly OM, Papadopoulos P (2003) Automotive disc brake squeal. J Sound Vib 267(1):105–166

    Article  Google Scholar 

  5. Nishiwaki M. Review of study on brake squeal[J]. JSAE Review, 1990, 11(4).

    Google Scholar 

  6. Crolla DA, Lang AM (1991) Paper VII (i) brake noise and vibration-the state of the art. Tribology Series 18:165–174

    Article  Google Scholar 

  7. Ibrahim RA (1994) Friction-induced vibration, chatter, squeal, and chaos, Part I: mechanics of contact and friction. Appl Mech Rev 47(7):209–226

    Article  Google Scholar 

  8. Ibrahim RA (1994) Friction-induced vibration, chatter, squeal, and chaos—part II: dynamics and modeling. Appl Mech Rev 47(7):227–253

    Article  Google Scholar 

  9. Yang S, Gibson RF (1997) Brake vibration and noise: reviews, comments, and proposals. Int J Mater Prod Technol 12(4–6):496–513

    Google Scholar 

  10. Papinniemi A, Lai JCS, Zhao J et al (2002) Brake squeal: a literature review. Appl Acoust 63(4):391–400

    Article  Google Scholar 

  11. Chen F, Quaglia RL, Tan CA. On automotive disc brake squeal Part I: mechanisms and causes (2003). SAE Technical Paper.

    Google Scholar 

  12. Dessouki O, Drake G, Lowe B, et al. Disc brake squeal: diagnosis and prevention (2003). SAE Technical Paper.

    Google Scholar 

  13. Ouyang H, Nack W, Yuan Y, et al. On automotive disc brake squeal part II: simulation and analysis (2003). SAE Technical Paper.

    Google Scholar 

  14. Chen F, Abdelhamid MK, Blaschke P, et al. On automotive disc brake squeal part III test and evaluation (2003). SAE Technical Paper.

    Google Scholar 

  15. Chen F, Tong H, Chen S E, et al. On automotive disc brake squeal part IV reduction and prevention (2003). SAE Technical Paper.

    Google Scholar 

  16. Bhushan B (1980) Stick-slip induced noise generation in water-lubricated compliant rubber bearings. J Lubr Technol 102(2):201–212

    Article  Google Scholar 

  17. Eriksson M, Bergman F, Jacobson S (1999) Surface characterisation of brake pads after running under silent and squealing conditions. Wear 232(2):163–167

    Article  Google Scholar 

  18. Bergman F, Eriksson M, Jacobson S (1999) Influence of disc topography on generation of brake squeal. Wear 225:621–628

    Article  Google Scholar 

  19. Hoffmann N, Fischer M, Allgaier R et al (2002) A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech Res Commun 29(4):197–205

    Article  Google Scholar 

  20. Ibrahim RA (1994) Friction-induced vibration, chatter, squeal, and chaos—part II: dynamics and modeling. Appl Mech Rev 47(7):227–253

    Article  Google Scholar 

  21. Carr J (2012) Applications of centre manifold theory. Springer Science & Business Media, New York, NY

    MATH  Google Scholar 

  22. Chen GX, Zhou ZR (2003) Correlation of a negative friction–velocity slope with squeal generation under reciprocating sliding conditions. Wear 255(1):376–384

    Article  Google Scholar 

  23. Kang J, Krousgrill CM, Sadeghi F (2009) Oscillation pattern of stick–slip vibrations. Int J Non-Linear Mech 44(7):820–828

    Article  Google Scholar 

  24. Meziane A, D’Errico S, Baillet L et al (2007) Instabilities generated by friction in a pad–disc system during the braking process. Tribol Int 40(7):1127–1136

    Article  Google Scholar 

  25. Zhang L, Wu J, Meng D (2015) Relationship among mode coupling, friction-velocity slope and stick-slip motion. J Tongji Univ (Nat Sci) 43(12):1850–1859

    Google Scholar 

  26. Chen WC (2008) Nonlinear dynamics and chaos in a fractional-order financial system. Chaos, Solitons Fractals 36(5):1305–1314

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuang Zhang .

Editor information

Editors and Affiliations

Appendices

Appendix A

Appendix B

Appendix C

$$ \begin{aligned} \ddot{u} & = \frac{{d^{2} u}}{{d\tau^{2} }},\ddot{v} = \frac{{d^{2} v}}{{d\tau^{2} }},\ddot{w} = \frac{{d^{2} w}}{{d\tau^{2} }},\dot{u} = \frac{du}{d\tau }, \\ \kappa_{11} & { = }1 + \kappa_{1} \cos^{2} \alpha_{1} + \kappa_{3} + \kappa_{4} \cos^{2} \alpha_{2} ,\kappa_{12} = \kappa_{21} = \kappa_{1} \sin \alpha_{1} \cos \alpha_{1} - \kappa_{4} \sin \alpha_{2} \cos \alpha_{2} ,\kappa_{13} = \kappa_{31} = - \kappa_{4} L\,\sin \alpha_{2} \cos \alpha_{2} \\ \kappa_{22} & = \kappa_{1} \sin^{2} \alpha_{1} + \kappa_{2} + \kappa_{5} ,\kappa_{23} = \kappa_{32} = \kappa_{5} L,\kappa_{33} = \kappa_{5} L^{2} \\ f_{i} & = \text{sgn} (V_{\text{reli}} )\mu_{i} ,\mu_{i} = (1 - e^{{ - d\sqrt {\frac{{k_{11} }}{{m_{1} }}} \left| {V_{\text{reli}} } \right|}} )\left\{ {\mu_{k} - (\mu_{k} - \mu_{s} )e^{{ - h\sqrt {\frac{{k_{11} }}{{m_{1} }}} \left| {V_{\text{reli}} } \right|}} } \right\},V_{\text{reli}} = \sqrt {m_{i} /k_{11} } V_{0} + \dot{u} \\ \end{aligned} $$

\( u^{*} ,v^{*} ,w^{*} \) solved by the equation:

$$ \left\{ {\begin{array}{*{20}l} {\kappa_{11} u^{*} + \kappa_{12} v^{*} + \kappa_{13} w^{*} = f_{1}^{*} \kappa_{2} v^{*} + f_{2}^{*} \kappa_{5} v^{*} } \hfill \\ {\kappa_{21} u^{*} + \kappa_{22} v^{*} + \kappa_{23} w^{*} = - \frac{{P_{1} + P_{2} }}{{k_{1} }}} \hfill \\ {\kappa_{31} u^{*} + \kappa_{32} v^{*} + \kappa_{33} w^{*} = f_{2}^{*} \kappa_{5} w^{*} L\left( {v^{*} + Lw^{*} } \right)} \hfill \\ \end{array} } \right. $$

Appendix D

When \( \beta = 0 \), the conjugate eigenvalues of the system are:

$$ \Omega _{1,2}^{\prime \prime 2} = \frac{1}{2}\left[ {(1 + \kappa_{1} + \kappa_{2} ) \pm \sqrt {1 + \kappa_{1}^{2} + \kappa_{2}^{2} + 2\kappa_{1} \cos (2\alpha_{1} - 2\alpha_{2} ) - 2\kappa_{2} \cos (2\alpha_{1} ) - 2\kappa_{1} \kappa_{2} \cos (2\alpha_{2} ) - 2f^{*} \kappa_{2} \kappa_{12} } } \right] $$

Define \( \Delta = 1 + \kappa_{1}^{2} + \kappa_{2}^{2} + 2\kappa_{1} \cos (2\alpha_{1} - 2\alpha_{2} ) - 2\kappa_{2} \cos 2\alpha_{1} - 2\kappa_{1} \kappa_{2} \cos 2\alpha_{2} - 2f^{*} \kappa_{2} \kappa_{12} \), therefore:

  1. (1)

    When \( \Delta > 0,\Omega _{1} \) and \( \Omega _{2} \) are conjugate pure imaginary numbers, real parts are zero。

  2. (2)

    When \( \Delta = 0,\Omega _{1} \) and \( \Omega _{2} \) are conjugate pure imaginary numbers, real parts are zero。

  3. (3)

    When \( \Delta > 0,\Omega _{1} \), and \( \Omega _{2} \) are complex conjugate pairs with one real part greater than zero and one less than zero.

Obviously \( 1 + \kappa_{1}^{2} + \kappa_{2}^{2} + 2\kappa_{1} \cos (2\alpha_{1} - 2\alpha_{2} ) - 2\kappa_{2} \cos 2\alpha_{1} - 2\kappa_{1} \kappa_{2} \cos 2\alpha_{2} > 0 \), so we can determine:

When \( \kappa_{12} > 0 \) and \( f^{*} > \frac{{1 + \kappa_{1}^{2} + \kappa_{2}^{2} + 2\kappa_{1} \cos (2\alpha_{1} - 2\alpha_{2} ) - 2\kappa_{2} \cos 2\alpha_{1} - 2\kappa_{1} \kappa_{2} \cos 2\alpha_{2} }}{{2\kappa_{2} \sin 2\alpha_{1} + 2\kappa_{1} \kappa_{2} \sin 2\alpha_{2} }} \), the real part of the eigenvalues of the system is positive.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Zhang, Z., Meng, D. (2019). A Study on the Relationship Among Several Friction-Induced Instability Mechanisms Based on Multi-point Contact Nonlinear Dynamical Friction-Induced Vibration Model. In: (SAE-China), S. (eds) Proceedings of the 19th Asia Pacific Automotive Engineering Conference & SAE-China Congress 2017: Selected Papers. SAE-China 2017. Lecture Notes in Electrical Engineering, vol 486. Springer, Singapore. https://doi.org/10.1007/978-981-10-8506-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8506-2_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8505-5

  • Online ISBN: 978-981-10-8506-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics