Skip to main content

Protein-RNA Interactions in the Single-Stranded RNA Bacteriophages

  • Chapter
  • First Online:
Virus Protein and Nucleoprotein Complexes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 88))

Abstract

Bacteriophages of the Leviviridae family are small viruses with short single-stranded RNA (ssRNA) genomes. Protein-RNA interactions play a key role throughout the phage life cycle, and all of the conserved phage proteins - the maturation protein, the coat protein and the replicase - are able to recognize specific structures in the RNA genome. The phage-coded replicase subunit associates with several host proteins to form a catalytically active complex. Recognition of the genomic RNA by the replicase complex is achieved in a remarkably complex manner that exploits the RNA-binding properties of host proteins and the particular three-dimensional structure of the phage genome. The coat protein recognizes a hairpin structure at the beginning of the replicase gene. The binding interaction serves to regulate the expression of the replicase gene and can be remarkably different in various ssRNA phages. The maturation protein is a minor structural component of the virion that binds to the genome, mediates attachment to the host and guides the genome into the cell. The maturation protein has two distinct RNA-binding surfaces that are in contact with different regions of the genome. The maturation and coat proteins also work together to ensure the encapsidation of the phage genome in new virus particles. In this chapter, the different ssRNA phage protein-RNA interactions, as well as some of their practical applications, are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avota E, Berzins V, Grens E, Vishnevsky Y, Luce R, Biebricher CK (1998) The natural 6 S RNA found in Qbeta-infected cells is derived from host and phage RNA. J Mol Biol 276(1):7–17

    CAS  PubMed  Google Scholar 

  • Bachmann MF, Storni T, Maurer P, Tissot A, Schwarz K, Meijerink E, Lipowsky G, Pumpens P, Cielens I and Renhofa R (2003) Packaging of immunostimulatory cpg into virus-like particles: method of preparation and use. E. P. Office. WO03024481 (A2)

    Google Scholar 

  • Bardwell VJ, Wickens M (1990) Purification of RNA and RNA-protein complexes by an R17 coat protein affinity method. Nucleic Acids Res 18(22):6587–6594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernhardt TG, Wang IN, Struck DK, Young R (2001) A protein antibiotic in the phage Qbeta virion: diversity in lysis targets. Science 292(5525):2326–2329

    CAS  PubMed  Google Scholar 

  • Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2(4):437–445

    CAS  PubMed  Google Scholar 

  • Biebricher CK, Luce R (1993) Sequence analysis of RNA species synthesized by Qbeta replicase without template. Biochemistry 32(18):4848–4854

    CAS  PubMed  Google Scholar 

  • Biebricher CK, Eigen M, Luce R (1986) Template-free RNA synthesis by Qb replicase. Nature 321:89–91

    CAS  PubMed  Google Scholar 

  • Blumenthal T, Landers TA, Weber K (1972) Bacteriophage Qb replicase contains the protein biosynthesis elongation factors EF Tu and EF Ts. Proc Natl Acad Sci U S A 69(5):1313–1317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boni IV, Artamonova VS, Dreyfus M (2000) The last RNA-binding repeat of the Escherichia coli ribosomal protein S1 is specifically involved in autogenous control. J Bacteriol 182(20):5872–5879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley DE (1966) The structure and infective process of a Pseudomonas Aeruginosa bacteriophage containing ribonucleic acid. J Gen Microbiol 45:83–96

    CAS  Google Scholar 

  • Chao JA, Patskovsky Y, Almo SC, Singer RH (2008) Structural basis for the coevolution of a viral RNA-protein complex. Nat Struct Mol Biol 15(1):103–105

    CAS  PubMed  Google Scholar 

  • Chetverin AB, Spirin AS (1995) Replicable RNA vectors: prospects for cell-free gene amplification, expression, and cloning. Prog Nucleic Acid Res Mol Biol 51:225–270

    CAS  PubMed  Google Scholar 

  • Chetverin AB, Chetverina HV, Munishkin AV (1991) On the nature of spontaneous RNA synthesis by Qbeta replicase. J Mol Biol 222(1):3–9

    CAS  PubMed  Google Scholar 

  • Chetverina HV, Chetverin AB (1993) Cloning of RNA molecules in vitro. Nucleic Acids Res 21(10):2349–2353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford EM, Gesteland RF (1964) The adsorption of bacteriophage R17. Virology 22:165–167

    Google Scholar 

  • Dai X, Li Z, Lai M, Shu S, Du Y, Zhou ZH, Sun R (2017) In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus. Nature 541(7635):112–116

    CAS  PubMed  Google Scholar 

  • Dent KC, Thompson R, Barker AM, Hiscox JA, Barr JN, Stockley PG, Ranson NA (2013) The asymmetric structure of an icosahedral virus bound to its receptor suggests a mechanism for genome release. Structure 21(7):1225–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiers W, Contreras R, Duerinck F, Haegeman G, Iserentant D, Merregaert J, Min Jou W, Molemans F, Raeymaekers A, Vandenberghe A, Volckaert G, Ysebaert M (1976) Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature 260:500–507

    CAS  PubMed  Google Scholar 

  • Franze de Fernandez MT, Eoyang L, August JT (1968) Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature 219(5154):588–590

    CAS  PubMed  Google Scholar 

  • Franze de Fernandez MT, Hayward WS, August JT (1972) Bacterial proteins required for replication of phage Qb ribonucleic acid. Pruification and properties of host factor I, a ribonucleic acid-binding protein. J Biol Chem 247(3):824–831

    CAS  PubMed  Google Scholar 

  • Goessens WHF, Driessen AJM, Wilschut J, van Duin J (1988) A synthetic peptide corresponding to the C-terminal 25 residues of phage MS2 coded lysis protein dissipates the protonmotive force in Escherichia coli membrane vesicles by generating hydrophilic pores. EMBO J 7:867–873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorzelnik KV, Cui Z, Reed CA, Jakana J, Young R, Zhang J (2016) Asymmetric cryo-EM structure of the canonical Allolevivirus Qbeta reveals a single maturation protein and the genomic ssRNA in situ. Proc Natl Acad Sci U S A 113(41):11519–11524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grahn E, Stonehouse NJ, Adams CJ, Fridborg K, Beigelman L, Matulic-Adamic J, Warriner SL, Stockley PG, Liljas L (2000) Deletion of a single hydrogen bonding atom from the MS2 RNA operator leads to dramatic rearrangements at the RNA-coat protein interface. Nucleic Acids Res 28:4611–4616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grahn E, Moss T, Helgstrand C, Fridborg K, Sundaram M, Tars K, Lago H, Stonehouse NJ, Davis DR, Stockley PG, Liljas L (2001) Structural basis of pyrimidine specificity in the MS2 RNA hairpin-coat-protein complex. RNA 7(11):1616–1627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gralla J, Steitz JA, Crothers DM (1974) Direct physical evidence for secondary structure in an isolated fragment of R17 bacteriophage mRNA. Nature 248:204–208

    CAS  PubMed  Google Scholar 

  • Haruna I, Spiegelman S (1965) Specific template requirments of RNA replicases. Proc Natl Acad Sci U S A 54(2):579–587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hecker N, Wiegels T, Torda AE (2013) RNA secondary structure diagrams for very large molecules: RNAfdl. Bioinformatics 29(22):2941–2942

    CAS  PubMed  Google Scholar 

  • Helgstrand C, Grahn E, Moss T, Stonehouse NJ, Tars K, Stockley PG, Liljas L (2002) Investigating the structural basis of purine specificity in the structures of MS2 coat protein RNA translational operator hairpins. Nucleic Acids Res 30(12):2678–2685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hofstetter H, Monstein H, Weissmann C (1974) The readthrough protein A1 is essential for the formation of viable Qb particles. Biochim Biophys Acta 374:238–251

    CAS  PubMed  Google Scholar 

  • Hohn T (1969) Role of RNA in the assembly process of bacteriophage fr. J Mol Biol 43:191–200

    CAS  PubMed  Google Scholar 

  • Jazurek M, Ciesiolka A, Starega-Roslan J, Bilinska K, Krzyzosiak WJ (2016) Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases. Nucleic Acids Res 44(19):9050–9070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings GT, Bachmann MF (2008) The coming of age of virus-like particle vaccines. Biol Chem 389(5):521–536

    CAS  Google Scholar 

  • Kacian DL, Mills DR, Kramer FR, Spiegelman S (1972) A replicating RNA molecule suitable for a detailed analysis of extracellular evolution and replication. Proc Natl Acad Sci U S A 69(10):3038–3042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamen R, Kondo M, Romer W, Weissmann C (1972) Reconstitution of Qb replicase lacking subunit with protein-synthesis-interference factor i. Eur J Biochem 31(1):44–51

    CAS  PubMed  Google Scholar 

  • Karnik S, Billeter M (1983) The lysis function of RNA bacteriophage Qb is mediated by the maturation (A2) protein. EMBO J 2:1521–1526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kastelein RA, Berkhout B, Overbeek GP, van Duin J (1983) Effect of the sequences upstream from the ribosome-binding site on the yield of protein from the cloned gene for phage MS2 coat protein. Gene 23:245–254

    CAS  PubMed  Google Scholar 

  • Kazaks A, Voronkova T, Rumnieks J, Dishlers A, Tars K (2011) Genome structure of caulobacter phage phiCb5. J Virol 85(9):4628–4631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kidmose RT, Vasiliev NN, Chetverin AB, Andersen GR, Knudsen CR (2010) Structure of the Qbeta replicase, an RNA-dependent RNA polymerase consisting of viral and host proteins. Proc Natl Acad Sci U S A 107(24):10884–10889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klovins J, van Duin J (1999) A long-range pseudoknot in Qbeta RNA is essential for replication. J Mol Biol 294(4):875–884

    CAS  PubMed  Google Scholar 

  • Klovins J, Berzins V, van Duin J (1998) A long-range interaction in Qbeta RNA that bridges the thousand nucleotides between the M-site and the 3′ end is required for replication. RNA 4(8):948–957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klovins J, Overbeek GP, van den Worm SH, Ackermann HW, van Duin J (2002) Nucleotide sequence of a ssRNA phage from Acinetobacter: kinship to coliphages. J Gen Virol 83(Pt 6):1523–1533

    CAS  PubMed  Google Scholar 

  • Koning RI, Gomez-Blanco J, Akopjana I, Vargas J, Kazaks A, Tars K, Carazo JM, Koster AJ (2016) Asymmetric cryo-EM reconstruction of phage MS2 reveals genome structure in situ. Nat Commun 7:12524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozlovska TM, Cielens I, Dreilinna D, Dislers A, Baumanis V, Ose V, Pumpens P (1993) Recombinant RNA phage Qbeta capsid particles synthesized and self-assembled in Escherichia coli. Gene 137(1):133–137

    CAS  PubMed  Google Scholar 

  • Kozlovskaya TM, Pumpen PP, Dreilina DE, Tsimanis AJ, Ose VP, Tsibinogin VV, Gren EJ (1986) Formation of capsid-like structures as a result of expression of coat protein gene of RNA phage fr. Dokl Akad Nauk SSSR 287:452–455

    CAS  Google Scholar 

  • Krishnamurthy SR, Janowski AB, Zhao G, Barouch D, Wang D (2016) Hyperexpansion of RNA bacteriophage diversity. PLoS Biol 14(3):e1002409

    PubMed  PubMed Central  Google Scholar 

  • Li D, Wei T, Abbott CM, Harrich D (2013) The unexpected roles of eukaryotic translation elongation factors in RNA virus replication and pathogenesis. Microbiol Mol Biol Rev 77(2):253–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Licis N, Balklava Z, van Duin J (2000) Forced retroevolution of an RNA bacteriophage. Virology 271:298–306

    CAS  PubMed  Google Scholar 

  • Lim F, Peabody DS (2002) RNA recognition site of PP7 coat protein. Nucleic Acids Res 30(19):4138–4144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim F, Spingola M, Peabody DS (1996) The RNA-binding site of bacteriophage Qb coat protein. J Biol Chem 271:31839–31845

    CAS  PubMed  Google Scholar 

  • Lowary PT, Uhlenbeck OC (1987) An RNA mutation that increases the affinity of an RNA-protein interaction. Nucleic Acids Res 15:10483–10493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer F, Weber H, Weissmann C (1981) Interaction of Qb replicase with Qb RNA. J Mol Biol 153:631–660

    CAS  PubMed  Google Scholar 

  • Mikel P, Vasickova P, Kralik P (2015) Methods for preparation of MS2 phage-like particles and their utilization as process control viruses in RT-PCR and qRT-PCR detection of RNA viruses from food matrices and clinical specimens. Food Environ Virol 7:96

    CAS  Google Scholar 

  • Miranda G, Schuppli D, Barrera I, Hausherr C, Sogo JM, Weber H (1997) Recognition of bacteriophage Qbeta plus strand RNA as a template by Qbeta replicase: role of RNA interactions mediated by ribosomal proteins S1 and host factor. J Mol Biol 267(5):1089–1103

    CAS  PubMed  Google Scholar 

  • Moody MD, Burg JL, DiFrancesco R, Lovern D, Stanick W, Lin-Goerke J, Mahdavi K, Wu Y, Farrell MP (1994) Evolution of host cell RNA into efficient template RNA by Qbeta replicase: the origin of RNA in untemplated reactions. Biochemistry 33(46):13836–13847

    CAS  PubMed  Google Scholar 

  • Munishkin AV, Voronin LA, Chetverin AB (1988) An in vivo recombinant RNA capable of autocatalytic synthesis by Qbeta replicase. Nature 333(6172):473–475

    CAS  PubMed  Google Scholar 

  • Munishkin AV, Voronin LA, Ugarov VI, Bondareva LA, Chetverina HV, Chetverin AB (1991) Efficient templates for Q beta replicase are formed by recombination from heterologous sequences. J Mol Biol 221(2):463–472

    CAS  PubMed  Google Scholar 

  • Pasloske BL, Walkerpeach CR, Obermoeller RD, Winkler M, DuBois DB (1998) Armored RNA technology for production of ribonuclease-resistant viral RNA controls and standards. J Clin Microbiol 36:3590–3594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peabody DS (1990) Translational repression by bacteriophage MS2 coat protein expressed from a plasmid. A system for genetic analysis of a protein-RNA interaction. J Biol Chem 265:5684–5689

    CAS  PubMed  Google Scholar 

  • Peabody DS (1997) Role of the coat protein-RNA interaction in the life cycle of bacteriophage MS2. Mol Gen Genet 254:358–364

    CAS  PubMed  Google Scholar 

  • Peabody DS, Manifold-Wheeler B, Medford A, Jordan SK, do Carmo Caldeira J, Chackerian B (2008) Immunogenic display of diverse peptides on virus-like particles of RNA phage MS2. J Mol Biol 380(1):252–263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Persson M, Tars K, Liljas L (2013) PRR1 coat protein binding to its RNA translational operator. Acta Crystallogr D Biol Crystallogr 69(Pt 3):367–372

    CAS  PubMed  Google Scholar 

  • Pickett GG, Peabody DS (1993) Encapsidation of heterologous RNAs by bacteriophage MS2 coat protein. Nucleic Acids Res 21:4621–4626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pumpens P, Renhofa R, Dishlers A, Kozlovska T, Ose V, Pushko P, Tars K, Grens E, Bachmann MF (2016) The true story and advantages of RNA phage capsids as Nanotools. Intervirology 59(2):74–110

    CAS  PubMed  Google Scholar 

  • Rolfsson O, Middleton S, Manfield IW, White SJ, Fan B, Vaughan R, Ranson NA, Dykeman E, Twarock R, Ford J, Kao CC, Stockley PG (2016) Direct Evidence for Packaging Signal-Mediated Assembly of Bacteriophage MS2. J Mol Biol 428(2 Pt B):431–448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rumnieks J, Tars K (2012) Diversity of pili-specific bacteriophages: genome sequence of IncM plasmid-dependent RNA phage M. BMC Microbiol 12:277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rumnieks J, Tars K (2014) Crystal structure of the bacteriophage qbeta coat protein in complex with the RNA operator of the replicase gene. J Mol Biol 426(5):1039–1049

    CAS  PubMed  Google Scholar 

  • Rumnieks J, Tars K (2017) Crystal structure of the maturation protein from bacteriophage Qbeta. J Mol Biol 429(5):688–696

    CAS  PubMed  Google Scholar 

  • Schmidt JM, Stanier RY (1965) Isolation and characterization of bacteriophages active against stalked bacteria. J Gen Microbiol 39:95–107

    CAS  PubMed  Google Scholar 

  • Schuppli D, Miranda G, Tsui HC, Winkler ME, Sogo JM, Weber H (1997) Altered 3′-terminal RNA structure in phage Qbeta adapted to host factor-less Escherichia coli. Proc Natl Acad Sci U S A 94(19):10239–10242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuppli D, Miranda G, Qiu S, Weber H (1998) A branched stem-loop structure in the M-site of bacteriophage Qbeta RNA is important for template recognition by Qbeta replicase holoenzyme. J Mol Biol 283(3):585–593

    CAS  PubMed  Google Scholar 

  • Schuppli D, Georgijevic J, Weber H (2000) Synergism of mutations in bacteriophage Qbeta RNA affecting host factor dependence of Qbeta replicase. J Mol Biol 295(2):149–154

    CAS  PubMed  Google Scholar 

  • Shi M, Lin XD, Tian JH, Chen LJ, Chen X, Li CX, Qin XC, Li J, Cao JP, Eden JS, Buchmann J, Wang W, Xu J, Holmes EC, Zhang YZ (2016) Redefining the invertebrate RNA virosphere. Nature 540:539

    CAS  Google Scholar 

  • Shiba T, Miyake T (1975) New type of infectious complex of E. coli RNA phage. Nature 254:157–158

    CAS  PubMed  Google Scholar 

  • Skripkin EA, Adhin MR, de Smit MH, van Duin J (1990) Secondary structure of bacteriophage MS2. Conservation and biological significance. J Mol Biol 211:447–463

    CAS  PubMed  Google Scholar 

  • Sumper M, Luce R (1975) Evidence for de novo production of self-replicating and environmentally adapted RNA structures by bacteriophage Qbeta replicase. Proc Natl Acad Sci U S A 72(1):162–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeshita D, Tomita K (2010) Assembly of Q{beta} viral RNA polymerase with host translational elongation factors EF-Tu and -Ts. Proc Natl Acad Sci U S A 107(36):15733–15738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeshita D, Tomita K (2012) Molecular basis for RNA polymerization by Qbeta replicase. Nat Struct Mol Biol 19(2):229–237

    CAS  PubMed  Google Scholar 

  • Takeshita D, Yamashita S, Tomita K (2014) Molecular insights into replication initiation by Qbeta replicase using ribosomal protein S1. Nucleic Acids Res 42(16):10809–10822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai BP, Wang X, Huang L, Waterman ML (2011) Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Mol Cell Proteomics 10(4):M110 007385

    PubMed  PubMed Central  Google Scholar 

  • Valegård K, Liljas L, Fridborg K, Unge T (1990) The three-dimensional structure of the bacterial virus MS2. Nature 345:36–41

    PubMed  Google Scholar 

  • Valegård K, Murray JB, Stockley PG, Stonehouse NJ, Liljas L (1994) Crystal structure of an RNA bacteriophage coat protein-operator complex. Nature 371:623–626

    PubMed  Google Scholar 

  • Valegård K, Murray JB, Stonehouse NJ, van den Worm S, Stockley PG, Liljas L (1997) The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions. J Mol Biol 270:724–738

    PubMed  Google Scholar 

  • Van Duin J, Tsareva N (2006) Single-stranded RNA phages. In: Calendar R (ed) The bacteriophages. Oxford University Press, New York, pp 175–196

    Google Scholar 

  • Vasilyev NN, Kutlubaeva ZS, Ugarov VI, Chetverina HV, Chetverin AB (2013) Ribosomal protein S1 functions as a termination factor in RNA synthesis by Qbeta phage replicase. Nat Commun 4:1781

    PubMed  Google Scholar 

  • Wahba AJ, Miller MJ, Niveleau A, Landers TA, Carmichael GG, Weber K, Hawley DA, Slobin LI (1974) Subunit I of Qbeta replicase and 30 S ribosomal protein S1 of Escherichia coli. Evidence for the identity of the two proteins. J Biol Chem 249(10):3314–3316

    CAS  PubMed  Google Scholar 

  • Weber H (1976) The binding site for coat protein on bacteriophage Qb RNA. Biochim Biophys Acta 418:175–183

    CAS  PubMed  Google Scholar 

  • Weber H, Weissmann C (1970) The 3′-termini of bacteriophage Qbeta plus and minus strands. J Mol Biol 51(2):215–224

    CAS  PubMed  Google Scholar 

  • Weiner AM, Weber K (1971) Natural read-through at the UGA termination signal of Qbeta coat protein cistron. Nat New Biol 234:206–209

    CAS  PubMed  Google Scholar 

  • Weissmann C, Feix G, Slor H, Pollet R (1967) Replication of viral RNA. XIV. Single-stranded minus strands as template for the synthesis of viral plus strands in vitro. Proc Natl Acad Sci U S A 57(6):1870–1877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winter RB, Gold L (1983) Overproduction of bacteriophage Qb maturation (A2) protein leads to cell lysis. Cell 33:877–885

    CAS  PubMed  Google Scholar 

  • Witherell GW, Uhlenbeck OC (1989) Specific RNA binding by Qb coat protein. Biochemistry 28:71–76

    CAS  PubMed  Google Scholar 

  • Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9(1):133–148

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaspars Tārs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rūmnieks, J., Tārs, K. (2018). Protein-RNA Interactions in the Single-Stranded RNA Bacteriophages. In: Harris, J., Bhella, D. (eds) Virus Protein and Nucleoprotein Complexes. Subcellular Biochemistry, vol 88. Springer, Singapore. https://doi.org/10.1007/978-981-10-8456-0_13

Download citation

Publish with us

Policies and ethics