Skip to main content

A Low-Noise Low-Cost EEG Amplifier for Neural Recording Applications

  • Conference paper
  • First Online:
Advanced Computational and Communication Paradigms

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 475))

Abstract

The development and testing of a high-precision low-cost biopotential amplifier are presented in this paper. The amplifier consisting of filters and amplifiers operating at a gain of 92 dB over 0.5–45 Hz bandwidth provides very low noise levels for high-quality brain activity recordings. Signals acquired provide state-of-the-art signal–noise tradeoff. The resulting amplifier developed is an eight-channel EEG recording unit capable of recording brain activities and stores the data for research and clinical applications. Preliminary results obtained from experimentation in alpha rhythms and visual evoked potentials in the occipital region corroborate the precision and robustness of the designed amplifier.

P. V. Tirumani and S. Das have equally contributed to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoogerwerf AC, Wise KD (1994) A three-dimensional microelectrode array for chronic neural recording. IEEE Trans Biomed Eng 41:1136–1146

    Article  Google Scholar 

  2. Nordhausen CT, Maynard EM, Normann RA (1996) Single unit recording capabilities of a 100-microelectrode array. Brain Res 726:129–140

    Article  Google Scholar 

  3. Harrison Reid R, Charles Cameron (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid State Circuits 38(6):958–965

    Article  Google Scholar 

  4. Degrauwe M, Vittoz E, Verbauwhede I (1985) A micropower CMOS instrumentation amplifier. IEEE J Solid State Circuits SC-20:805–807

    Article  Google Scholar 

  5. van Peteghem PM, Verbauwhede I, Sansen WMC (1985) Micropower high-performance SC building block for integrated low-levelsignal processing. IEEE J Solid-State Circuits SC-20:837–844

    Google Scholar 

  6. Dorman MG, Prisbe MA, Meindl JD (1985) A monolithic signal processor for a neurophysiological telemetry system. IEEE J Solid State Circuits SC-20:1185–1193

    Article  Google Scholar 

  7. Harrison RR (2007) A versatile integrated circuit for the acquisition of biopotentials. In: IEEE 2007 Custom integrated circuits conference, CICC’07. IEEE

    Google Scholar 

  8. Tseng Y et al (2012) A 0.09 μW low power front-end biopotential amplifier for biosignal recording. IEEE Trans Biomed Circuits Syst 6(5):508–516

    Google Scholar 

  9. Ji J, Wise KD (1992) An implantable CMOS circuit interface for multiplexed microelectrode recording arrays. IEEE J Solid-State Circuits 27:433–443

    Article  Google Scholar 

  10. Pancrazio JJ, Bey PP Jr, Loloee A, Manne S, Chao HC, Howard LL, Gosney WM, Borkholder DA, Kovacs GTA, Manos P, Cuttino DS, Stenger DA (1998) Description and demonstration of a CMOS amplifier-based-system with measurement and stimulation capability for bioelectrical signal transduction. Biosensors Bioelectron. 13:971–979

    Article  Google Scholar 

  11. Martins R, Selberherr S, Vaz FA (1998) A CMOS IC for portable EEG acquisition systems. IEEE Trans Instrum Meas 47:1191–1196

    Article  Google Scholar 

  12. Gargiulo G et al (2010) An ultra-high input impedance ECG amplifier for long-term monitoring of athletes. Med Devices (Auckland, NZ) 3:1

    Google Scholar 

  13. Chandran AP, Najafi K, Wise KD (2002) A new DC baseline stabilization scheme for neural recording microprobes. In: Proceedings of IEEE BMES/EMBS conference, 1999, p 386

    Google Scholar 

  14. Yazicioglu RF et al (2007) A 60 μW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE J Solid-State Circuits 42(5):1100–1110

    Article  Google Scholar 

  15. Nagel JH (2000) Biopotential amplifiers.In: Bronzino JD (ed) Biomedical engineering hand book, 2nd edn. Springer, New York, pp 70–71

    Google Scholar 

  16. Neuman MR (1998) Biopotential amplifiers. In: Medical instrumentation: application and design, pp 292–296

    Google Scholar 

  17. www.ti.com/product/TL074

  18. Van Vollenhoven E, Reuver H, Somer J (1965) Transient response of butterworth filters. IEEE Trans Circuit Theory 12(4):624–626

    Article  Google Scholar 

  19. http://www.ti.com/lit/ds/sbos014/sbos014.pdf

  20. Feige B et al (2005) Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. J Neurophysiol 93(5):2864–2872

    Article  Google Scholar 

  21. Gudaitis AM (1995) Virtual right leg drive and augmented right leg drive circuits for common mode voltage reduction in ECG and EEG measurements. US Patent 5,392,784 28 Feb 1995

    Google Scholar 

  22. Deedwania S, Gandhi TK (2016) An ensemble approach for brain computer interface applications. In: 2016 IEEE Region 10 Humanitarian technology conference (R10-HTC). https://doi.org/10.1109/r10-htc.2016.7906812

  23. Mohseni P, Najafi K (2002) A low power fully integrated bandpass operational amplifier for biomedical neural recording applications. In: Proceedings of IEEE EMBS/BMES conference, pp 2111–2112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pavan Varma Tirumani or Soukhin Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tirumani, P.V., Das, S., Swami, P., Gandhi, T. (2018). A Low-Noise Low-Cost EEG Amplifier for Neural Recording Applications. In: Bhattacharyya, S., Gandhi, T., Sharma, K., Dutta, P. (eds) Advanced Computational and Communication Paradigms. Lecture Notes in Electrical Engineering, vol 475. Springer, Singapore. https://doi.org/10.1007/978-981-10-8240-5_65

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8240-5_65

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8239-9

  • Online ISBN: 978-981-10-8240-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics