Skip to main content

Assessment of Segmentation Techniques for Chronic Wound Surface Area Detection

  • Conference paper
  • First Online:
Advanced Computational and Communication Paradigms

Abstract

A skin ulcer is a clinical pathology of localized damage to skin and tissue instigated by venous insufficiency. Precise identification of wound surface area is one of the challenging tasks in the dermatological evaluation. The assessment is carried out by clinicians using traditional approach of scales or metrics through visual inspection. The manual assessment leads to intra-observer variability, subjective error and time complexity. This paper evaluates the performances of supervised and unsupervised segmentation techniques used for wound area detection. The unsupervised methods used for evaluation were namely K-means, Fuzzy C-means and Gaussian mixture model. On the other part, random forest was implemented for supervised classification. Several filtering methods were used to generate image feature set from wound images to train random forest. The Gaussian mixture model with classification expectation–maximization clustering method achieved the highest weighted sensitivity of 95.91% and weighted specificity of 96.7%. The comparative study shows the superiority of proposed method and its suitability in wound segmentation from normal skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cho, N.H., Whiting, D., Guariguata, L., Montoya, P.A., Forouhi, N., Hambleton, I., et al.: IDF Diabetes Atlas. International Diabetes Federation, Brussels, Belgium (2013)

    Google Scholar 

  2. Kailas, A., Chong, C.C., Watanabe, F.: From mobile phones to personal wellness dashboards. IEEE Pulse 1(1), 57–63 (2010)

    Article  Google Scholar 

  3. Kecelj Leskovec, N., Perme, M.P., Jezeršek, M., Mozina, J., Pavlović, M.D., Lunder, T.: Initial healing rates as predictive factors of venous ulcer healing: the use of a laser-based three-dimensional ulcer measurement. Wound Repair Regen. 16(4), 507–512 (2008)

    Article  Google Scholar 

  4. Lubeley, D., Jostschulte, K., Kays, R., Biskup, K., Clasbrummel, B.: 3D wound measurement system for telemedical applications. Biomedizimische Technik 50(1), 1418–19 (2005)

    Google Scholar 

  5. Chang, A.C., Dearman, B., Greenwood, J.E., et al.: A comparison of wound area measurement techniques: visitrak versus photography. Eplasty 11(18), 158–66 (2011)

    Google Scholar 

  6. Little, C., McDonald, J., Jenkins, M., McCarron, P.: An overview of techniques used to measure wound area and volume. J. Wound Care 18(6), 250–253 (2009)

    Article  Google Scholar 

  7. Pavlovčič, U., Diaci, J., Možina, J., Jezeršek, M.: Wound perimeter, area, and volume measurement based on laser 3D and color acquisition. Biomed. Eng. Online 14(1), 1 (2015)

    Article  Google Scholar 

  8. Hansen, G.L., Sparrow, E.M., Kokate, J.Y., Leland, K.J., Iaizzo, P.A.: Wound status evaluation using color image processing. IEEE Trans. Med. Imaging 16(1), 78–86 (1997)

    Article  Google Scholar 

  9. Krouskop, T.A., Baker, R., Wilson, M.S.: A noncontact wound measurement system. J. Rehabil. Res. Dev. 39(3), 337 (2002)

    Google Scholar 

  10. Duckworth, M., Patel, N., Joshi, A., Lankton, S.: A clinically affordable non-contact wound measurement device (2007)

    Google Scholar 

  11. Mesa, H., Veredas, F.J., Morente, L.: A hybrid approach for tissue recognition on wound images. In: International Conference on Hybrid Intelligent Systems, pp. 120–125. IEEE (2008)

    Google Scholar 

  12. Aslantas, V., Tunckanat, M.: Differential evolution algorithm for segmentation of wound images. In: IEEE International Symposium on Intelligent Signal Processing, pp. 1–5. IEEE (2007)

    Google Scholar 

  13. Deng, Y., Manjunath, B.: Unsupervised segmentation of color-texture regions in images and video. IEEE Trans. Pattern Anal. Mach. Intell. 23(8), 800–810 (2001)

    Article  Google Scholar 

  14. Dhane, D.M., Krishna, V., Achar, A., Bar, C., Sanyal, K., Chakraborty, C.: Spectral clustering for unsupervised segmentation of lower extremity wound beds using optical images. J. Med. Syst. 40(9), 207 (2016)

    Article  Google Scholar 

  15. Kolesnik, M., Fexa, A.: Multi-dimensional color histograms for segmentation of wounds in images. In: International Conference on Image Analysis and Recognition, pp. 1014–1022. Springer (2005)

    Google Scholar 

  16. Treuillet, S., Albouy, B., Lucas, Y.: Three-dimensional assessment of skin wounds using a standard digital camera. IEEE Trans. Med. Imaging 28(5), 752–762 (2009)

    Article  Google Scholar 

  17. Wannous, H., Lucas, Y., Treuillet, S.: Enhanced assessment of the wound-healing process by accurate multiview tissue classification. IEEE Trans. Med. Imaging 30(2), 315–326 (2011)

    Article  Google Scholar 

  18. Veredas, F.J., Mesa, H., Morente, L.: Efficient detection of wound-bed and peripheral skin with statistical colour models. Med. Biol. Eng. Comput. 53(4), 345–359 (2015)

    Article  Google Scholar 

  19. Medetec Medical Images: http://www.medetec.co.uk/files/medetec-images.html (2016)

  20. Alpaydin, E.: Introduction to Machine Learning, 2nd edn. The MIT Press (2010)

    Google Scholar 

  21. Li, J.: Clustering based on a multilayer mixture model. J. Comput. Graph. Stat. 14(3), 547–568 (2005)

    Article  MathSciNet  Google Scholar 

  22. Arganda-Carreras, I., Kaynig, V., Schindelin, J., Cardona, A., Seung, H.: Trainable weka segmentation: a machine learning tool for microscopy image segmentation (2014)

    Google Scholar 

  23. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges CSIR for financial support (09/81(1223)/2014/EMRI dt. 12-08-2014). The second and third author would like to acknowledge ICMR, GoI, (Grant number: DHR/GIA/21/2014, dated 18 November, 2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maitreya Maity .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maity, M., Dhane, D., Bar, C., Chakraborty, C., Chatterjee, J. (2018). Assessment of Segmentation Techniques for Chronic Wound Surface Area Detection. In: Bhattacharyya, S., Chaki, N., Konar, D., Chakraborty, U., Singh, C. (eds) Advanced Computational and Communication Paradigms. Advances in Intelligent Systems and Computing, vol 706. Springer, Singapore. https://doi.org/10.1007/978-981-10-8237-5_68

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8237-5_68

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8236-8

  • Online ISBN: 978-981-10-8237-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics