Skip to main content

Signaling Pathways of Anticancer Plants: Action and Reaction

  • Chapter
  • First Online:
Anticancer Plants: Clinical Trials and Nanotechnology

Abstract

Insights into the alterations of the mammalian genome in neoplastic diseases and the mechanism of action of the therapeutic anticancer drugs are one of the extremely important, diverse, and challenging areas of study currently. By the virtue of lingering toxicity of the reputable chemical drugs, plant-derived anticancer substances, viz., vinblastine, vincristine, Taxol, topotecan, camptothecin, and podophyllotoxin derivatives, are highly safe and efficient in the treatment and management of this monstrous disease. Among the list of accessible targets of the therapeutic drugs, DNA replication and mitosis, hormonal regulation of cell growth, aberrant signaling pathways, cell surface receptors, and second messengers are noteworthy. Nowadays, newer therapeutic approaches are being followed, and an increased understanding into the mechanism of action of the therapeutic anticancer agents is evolving due to continuous and relentless efforts of the researchers. The aim of the present chapter is to highlight the application of medicinal plants and their secondary metabolites as anticancer substances and also focus on the signaling aspects of potential anticancer compounds to find out their mechanisms of action against cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adan A, Baran Y (2015) The pleiotropic effects of fisetin and hesperetin on human acute promyelocytic leukemia cells are mediated through apoptosis, cell cycle arrest, and alterations in signaling networks. Tumor Biol 36:8973–8984

    Article  CAS  Google Scholar 

  • Aggarwal BB, Shishodia S (2006) Guggulsterone inhibits NF-kappa and kappa B alpha kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. Biochem Pharmacol 71:1397–1421

    Article  PubMed  CAS  Google Scholar 

  • Alhosin M, Abusnina A, Achour M, Sharif T, Muller C, Peluso J, Chataigneau T, Lugnier C, Schini-Kerth VB, Bronner C, Fuhrmann G (2010) Induction of apoptosis by thymoquinone in lymphoblastic leukemia Jurkat cells is mediated by a p73-dependent pathway which targets the epigenetic integrator UHRF1. Biochem Pharmacol 79:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Araujo JR, Goncalves P, Martel F (2011) Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr Res 31:77–87

    Article  PubMed  CAS  Google Scholar 

  • Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang MT, Fisher C, Flynn E, Byers HR (1998) Curcumin is an in vivo inhibitor of angiogenesis. Mol Med 4:376–383

    Google Scholar 

  • Atkinson JM, Falconer RA, Edwards DR, Pennington CJ, Siller CS, Shnyder SD, Bibby MC, Patterson LH, Loadman PM, Gill JH (2010) Development of a novel tumor-targeted vascular disrupting agent activated by membrane-type matrix metalloproteinases. Cancer Res 70:6902–6912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azarenko O, Okouneva T, Singletary KW, Jordan MA, Wilson L (2008) Suppression of microtubule dynamic instability and turnover in MCF7 breast cancer cells by sulforaphane. Carcinogenesis 29:2360–2368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK (2003) Small molecule modulators of histone acetyltransferase p300. J Biol Chem 278:19134–19140

    Article  PubMed  CAS  Google Scholar 

  • Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78:431–441

    Article  CAS  PubMed  Google Scholar 

  • Barnes S (1995) Effect of genistein on in vitro and in vivo models of cancer. J Nutr 125:S777–S783

    Google Scholar 

  • Bertino JR (1997) Irinotecan for colorectal cancer. Semin Oncol 24:S18–S23

    PubMed  Google Scholar 

  • Best J, Carey N (2010) Epigenetic opportunities and challenges in cancer. Drug Discov Today 15:65–70

    Article  PubMed  CAS  Google Scholar 

  • Bishop JM (1987) The molecular genetics of cancer. Science 235:305–311

    Article  PubMed  CAS  Google Scholar 

  • Bourguignon L, Xia W, Wong G (2009) Hyaluronan mediated CD44 interaction with p300 and SIRT1 regulates β-catenin signaling and NFkB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells. J Biol Chem 284:2657–2671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai J, Yi FF, Bian ZY, Shen DF, Yang L, Yan L et al (2009) Crocetin protects against cardiac hypertrophy by blocking MEK-ERK1/2 signaling pathway. J Cell Mol Med 13:909–925

    Article  PubMed  CAS  Google Scholar 

  • Chandregowda V, Kush A, Reddy G (2009) Synthesis of benzamide derivatives of anacardic acid and their cytotoxic activity. Eur J Med Chem 44:2711–2719

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi MM, Kumar A, Darnay BG, Chainy GB, Agarwal S, Aggarwal BB (1997) Sanguinarine (Pseudochelerythrine) is a potent inhibitor of NF-kB activation, Ik-Bα phosphorylation, and degradation. J Biol Chem 272:30129–30134

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Shu W, Chen W, Wu Q, Liu H, Cui G (2007) Curcumin, both histone deacetylase and p300/CBP specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin Pharmacol Toxicol 101:427–433

    Article  PubMed  CAS  Google Scholar 

  • Cragg GM, Newman DJ (2005) Plants as a source of anticancer agents. J Ethanopharmacol 100:72–79

    Article  CAS  Google Scholar 

  • Creemers GJ, Bolis G, Gore M, Scarfone G, Lacave AJ, Guastalla JP, Despax R, Favalli G, Kreinberg R, Van Belle S, Hudson I, Verweij J, Ten Bokkel Huinink WW (1996) Topotecan, an active drug in the second-line treatment of epithelial ovarian cancer: results of a large European phase II study. J Clin Oncol 14:3056–3061

    Article  PubMed  CAS  Google Scholar 

  • Csuk R (2014) Betulinic acid and its derivatives: a patent review (2008–2013). Exp Opin Ther Pat 24:913–923

    Article  CAS  Google Scholar 

  • Darwiche N, El-Banna S, Gali-Muhtasib H (2007) Cell cycle modulatory and apoptotic effects of plant-derived anticancer drugs in clinical use or development. Expert Opin Drug Discov 2:361–379

    Article  PubMed  CAS  Google Scholar 

  • Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2:303–336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413

    Article  PubMed  CAS  Google Scholar 

  • Ellis L, Atadja PW, Johnstone RW (2009) Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 8:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2005) DNA methylation and cancer therapy: new developments and expectations. Curr Opin Oncol 17:55–60

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298

    Article  PubMed  CAS  Google Scholar 

  • Fahey JW, Talalay P (1999) Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes. Food Chem Toxicol 37:973–979

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP (2005) Cancer epigenetics is no Mickey mouse. Cancer Cell 8:267–268

    Article  PubMed  CAS  Google Scholar 

  • Fini L, Selgrad M, Fogliano V, Graziani G, Romano M, Hotchkiss E, Daoud YA, De Vol EB, Boland CR, Ricciardiello L (2007) Annurca apple polyphenols have potent demethylating activity and can reactivate silenced tumor suppressor genes in colorectal cancer cells. J Nutr 137:2622–2628

    Article  PubMed  CAS  Google Scholar 

  • Foster DA, Yellen P, Xu L, Saqcena M (2010) Regulation of G1 cell cycle progression: distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s). Genes Cancer 1:1124–1131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu S, Kurzrock R (2010) Development of curcumin as an epigenetic agent. Cancer Ghantous A, Gali-Muhtasib H, Vuorela H, Saliba NA, Darwiche N (2010) What made sesquiterpene lactones reach cancer clinical trials. Drug Discov Today 15:668–678

    Google Scholar 

  • Ganguly A, Yang H, Cabral F (2010) Paclitaxel-dependent cell lines reveal a novel drug activity. Mol Cancer Ther 9:2914–2923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghantous A, Gali-Muhtasib H, Vuorela H, Saliba NA, Darwiche N (2010) What made sesquiterpene lactones reach cancer clinical trials. Drug Discov Today 15:668–678

    Article  PubMed  CAS  Google Scholar 

  • Ghantous A, Sinjab A, Herceg Z, Darwiche N (2013) Parthenolide: from plant shoots to cancer roots. Drug Discov Today 18:894–905

    Article  CAS  PubMed  Google Scholar 

  • Gheorgheosu D, Duicu O, Dehelean C, Soica C, Muntean D (2014) Betulinic acid as a potent and complex antitumor phytochemical: a mini review. Anticancer Agents Med Chem 14:936–945

    Article  PubMed  CAS  Google Scholar 

  • Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 25:5220–5227

    Article  PubMed  CAS  Google Scholar 

  • Gibbs A, Schwartzman J, Deng V, Alumkal J (2009) Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proc Natl Acad Sci U S A 106:16663–16668

    Article  PubMed  PubMed Central  Google Scholar 

  • Guil S, Esteller M (2009) DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 41:87–95

    Article  PubMed  CAS  Google Scholar 

  • Guzman M, Jordan C (2005) Feverfew: weeding out the root of leukaemia. Exp Opin Biol Ther 5:1147–1152

    Article  CAS  Google Scholar 

  • Hauser AT, Jung M (2008) Targeting epigenetic mechanisms: potential of natural products in cancer chemoprevention. Planta Med 74:1593–1601

    Article  PubMed  CAS  Google Scholar 

  • Ho E, Clarke JD, Dashwood RH (2009) Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J Nutr 139:2393–2396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang M, Lu JJ, Huang MQ, Bao JL, Chen XP, Wang YT (2012) Terpenoids: natural products for cancer therapy. Exp Opin Invest Drugs 21:1801–1818

    Article  CAS  Google Scholar 

  • Ikezaki S, Nishikawa A, Furukawa F, Kudo K, Nakamura H, Tamura K, Mori H (2001) Chemopreventive effects of curcumin on glandular stomach carcinogenesis induced by N-methyl-N′-nitro-N-nitrosoguanidine and sodium chloride in rats. Anticancer Res 21:3407–3411

    PubMed  CAS  Google Scholar 

  • Jackson SJ, Singletary KW (2004) Sulforaphane inhibits human MCF-7 mammary cancer cell mitotic progression and tubulin polymerization. J Nutr 134:2229–2236

    Article  PubMed  CAS  Google Scholar 

  • Jagadeesh S, Sinha S, Pal B, Bhattacharya S, Banerjee P (2007) Mahanine reverses an epigenetically silenced tumor suppressor gene RASSF1A in human prostate cancer cells. Biochem Biophys Res Commun 362:212–217

    Article  PubMed  CAS  Google Scholar 

  • Jamison JR (2003) Clinical guide to nutrition and dietary supplements in disease management, 1st edn. Churchill Livingstone, London

    Google Scholar 

  • Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jordan MA (2002) Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem Anticancer Agents 2:1–17

    Article  PubMed  CAS  Google Scholar 

  • Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–266

    Article  CAS  PubMed  Google Scholar 

  • Khazir J, Mir BA, Pilcher L, Riley DL (2014) Role of plants in anticancer drug discovery. Phytochem Lett 7:173–181

    Article  CAS  Google Scholar 

  • King-Batoon A, Leszczynska JM, Klein CB (2008) Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ Mol Mutagen 49:36–45

    Article  PubMed  CAS  Google Scholar 

  • Kreuger MR, Grootjans S, Biavatti MW, Vandenabeele P, D’Herde K (2012) Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anticancer Drugs 23:883–896

    PubMed  Google Scholar 

  • Krishnamurthi K (2000) Screening of natural products for anticancer and antidiabetic properties. Health Adm 20:69–75

    Google Scholar 

  • Lambert JD, Elias RJ (2010) The antioxidant and prooxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501:65–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee J, Kim JH (2016) Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLoS One 11:e0155264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JS, Surh YJ (2005) Nrf2 as a novel molecular target for chemoprevention. Cancer Lett 224:171–184

    Article  PubMed  CAS  Google Scholar 

  • Lee BH, Yegnasubramanian S, Lin X, Nelson WG (2005) Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem 280:40749–40756

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Liu L, Andrews LG, Tollefsbol TO (2009) Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms. Int J Cancer 125:286–296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li XL, Hu YJ, Wang H, Yu BQ, Yue HL (2012) Molecular spectroscopy evidence of berberine binding to DNA: comparative binding and thermodynamic profile of intercalation. Biomacromolecules 13:873–880

    Article  PubMed  CAS  Google Scholar 

  • Lin JN, Lin VC, Rau KM, Shieh PC, Kuo DH, Shieh JC, Chen WJ, Tsai SC, Way TD (2010) Resveratrol modulates tumor cell proliferation and protein translation via SIRT1-dependent AMPK activation. J Agric Food Chem 58:1584–1592

    Article  PubMed  CAS  Google Scholar 

  • Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479–3485

    Article  Google Scholar 

  • Mahady GB, Pendland SL, Yun G, Lu ZZ (2002) Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer Res 22:4179–4181

    PubMed  CAS  Google Scholar 

  • Mai A, Altucci L (2009) Epi-drugs to fight cancer: from chemistry to cancer treatment, the road ahead. Int J Biochem Cell Biol 41:199–213

    Article  PubMed  CAS  Google Scholar 

  • McCallum C, Kwon S, Leavitt P, Shen DM, Liu W, Gurnett A (2007) Triptolide binds covalently to a 90 kDa nuclear protein. Role of epoxides in binding and activity. Immunobiology 212:549–556

    Article  PubMed  CAS  Google Scholar 

  • Meyers R (2001) Encyclopedia of physical science and technology, 3rd edn. Academic, San Diego

    Google Scholar 

  • Mi L, Xiao Z, Hood BL, Dakshanamurthy S, Wang X, Govind S, Conrads TP, Veenstra TD, Chung FL (2008) Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J Biol Chem 283:22136–22146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Misiewicz I, SkupiÅ„ska K, Kowalska E, LubiÅ„ski J, Kasprzycka-Guttman T (2004) Sulforaphane-mediated induction of a phase 2 detoxifying enzyme NAD(P)H:quinone reductase and apoptosis in human lymphoblastoid cells. Acta Biochim Pol 51:711–721

    PubMed  CAS  Google Scholar 

  • Mittal A, Piyathilake C, Hara Y, Katiyar SK (2003) Exceptionally high protection of photocarcinogenesis by topical application of (-)-epigallocatechin-3-gallate in hydrophilic cream in SKH-1 hairless mouse model: relationship to inhibition of UVB-induced global DNA hypomethylation. Neoplasia 5:555–565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohan A, Narayanan S, Sethuraman S, Krishnan UM (2014) Novel resveratrol and 5 fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. Bio Med Res Intern 2014:424239

    Google Scholar 

  • Moriarty R, Naithani R, Surve B (2007) Organosulfur compounds in cancer chemoprevention. Mini Rev Med Chem 7:827–838

    Article  PubMed  CAS  Google Scholar 

  • Murugan R, Vinothini G, Hara Y, Nagini S (2009) Black tea polyphenols target matrix metalloproteinases, RECK, proangiogenic molecules and histone deacetylase in a rat hepatocarcinogenesis model. Anticancer Res 29:2301–2305

    PubMed  CAS  Google Scholar 

  • Myzak M, Karplus P, Chung F, Dashwood R (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64:5767–5774

    Article  PubMed  CAS  Google Scholar 

  • Myzak M, Tong P, Dashwood W, Dashwood R, Ho E (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med 232:227–234

    CAS  Google Scholar 

  • Nelson KM, Weiss GJ (2008) MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther 7:3655–3660

    Article  PubMed  CAS  Google Scholar 

  • Parnaud G, Li P, Cassar G, Rouimi P, Tulliez J, Combaret L, Gamet-Payrastre L (2004) Mechanism of sulforaphane-induced cell cycle arrest and apoptosis in human colon cancer cells. Nutr Cancer 48:198–206

    Article  PubMed  CAS  Google Scholar 

  • Phillips PA, Dudeja V, McCarroll JA, Borja-Cacho D, Dawra RK, Grizzle WE, Vickers SM, Saluja AK (2007) Triptolide induces pancreatic cancer cell death via inhibition of heat shock protein 70. Cancer Res 67:9407–9416

    Article  PubMed  CAS  Google Scholar 

  • Potmeisel M, Pinedo H (1995) Camptothecins: new anticancer agents. CRC Press, Boca Raton, pp 149–150

    Google Scholar 

  • Prives C, Manley JL (2001) Why is p53 acetylated. Cell 107:815–818

    Article  PubMed  CAS  Google Scholar 

  • Priyadarshini K, Aparajitha UK (2012) Paclitaxel against cancer: a short review. Med Chem 2:139–141

    Google Scholar 

  • Prota AE, Bargsten K, Zurwerra D, Field JJ, Díaz JF, Altmann KH, Steinmetz MO (2013) Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science 339:587–590

    Article  PubMed  CAS  Google Scholar 

  • Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem 50:586–621

    Article  CAS  Google Scholar 

  • Radhakrishnan EK, Bava SV, Narayanan SS, Nath LR, Thulasidasan AKT, Soniya EV et al (2014) 6-Gingerol induces caspase dependent apoptosis and prevents PMA- induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. PLoS One 9:e104401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao GV, Kumar S, Islam M, Saber EM (2008) Folk medicines for anticancer therapy-a current status. Cancer Ther 6:913–922

    CAS  Google Scholar 

  • Rowinsky EK, Onetto N, Canetta RM, Arbuck SG (1992) Taxol-the 1st of the texanes, an important new class of anti-tumor agents. Semin Oncol 19:646–662

    PubMed  CAS  Google Scholar 

  • Savel H (1966) The metaphase arresting plant alkaloids and cancer chemotherapy. Prog Exp Tumor Res 8:189–224

    Article  PubMed  CAS  Google Scholar 

  • Scalbert A, Manach C, Morand C, Remesy Jimenez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45:287–306

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Stock R, Ghantous A, Bajbouj K, Saikali M, Darwiche N (2012) Epigenetic mechanisms of plant-derived anticancer drugs. Front Biosci 17:129–173

    Article  CAS  Google Scholar 

  • Segura-Pacheco B, Trejo-Becerril C, Perez-Cardenas E, Taja-Chayeb L, Mariscal I, Chavez A, Acuña C, Salazar AM, Lizano M, Dueñas-Gonzalez A (2003) Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin Cancer Res 9:1596–1603

    PubMed  CAS  Google Scholar 

  • Selvi R, Pradhan BSK, Shandilya J, Das C, Sailaja BS, Shankar N, Gadad GSS, Reddy A, Dasgupta D, Kundu TK (2009) Sanguinarine interacts with chromatin, modulates epigenetic modifications, and transcription in the context of chromatin. Chem Biol 16:203–216

    Article  CAS  Google Scholar 

  • Seo HS, Jo JK, Ku JM, Choi HS, Choi YK et al (2015) Induction of caspase dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 (STAT3) signaling in HER2-overexpressing BT-474 breast cancer cells. Biosci Rep 35:e00276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shankar S, Suthakar G, Srivastava RK (2007) Epigallocatechin-3-gallate inhibits cell cycle and induces apoptosis in pancreatic cancer. Front Biosci 12:5039–5051

    Article  PubMed  CAS  Google Scholar 

  • Shankar S, Ganapathy S, Hingorani SR, Srivastava RK (2008) EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci 13:440–452

    Article  PubMed  Google Scholar 

  • Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36

    Article  PubMed  CAS  Google Scholar 

  • Shoeb M (2006) Anticancer agents from medicinal plants. Bangladesh J Pharmacol 1:35–41

    Google Scholar 

  • Shukla S, Mehta A (2015) Anticancer potential of medicinal plants and their phytochemicals: a review. Braz J Bot 38:199–210

    Article  Google Scholar 

  • Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82:1807–1821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sparnins VL, Mott AW, Barany G, Wattenberg LW (1986) Effects of allyl methyl trisulfide on glutathione S-transferase activity and BP-induced neoplasia in the mouse. Nutr Cancer 8:211–215

    Article  PubMed  CAS  Google Scholar 

  • Sporn MB, Liby KT (2012) NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 12:564–571

    Article  PubMed  CAS  Google Scholar 

  • Steinberg D (2004) Appraising aneuploidy as a cancer cause. The Sci 18:26–27

    Google Scholar 

  • Strauss BS (1992) The origin of point mutations in human tumor cells. Cancer Res 52:249–253

    PubMed  CAS  Google Scholar 

  • Sun Y, Xun K, Wang Y, Chen X (2009) A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anti-Cancer Drugs 20:757–769

    Article  CAS  PubMed  Google Scholar 

  • Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    Article  PubMed  CAS  Google Scholar 

  • Thakore P, Mani RK, Singh J, Kavitha (2012) A brief review of plants having anticancer property. Int J Pharm Res Dev 3:129–136

    Google Scholar 

  • Thomasset SC, Berry DP, Garcea G, Marczylo T, Steward WP, Gescher AJ (2007) Dietary polyphenolic phytochemicals promising cancer chemopreventive agents in humans. A review of their clinical properties. Int J Cancer 3:451–458

    Article  CAS  Google Scholar 

  • Tillhon M, Guaman Ortiz LM, Lombardi P, Scovassi AI (2012) Berberine: new perspectives for old remedies. Biochem Pharmacol 84:1260–1267

    Article  PubMed  CAS  Google Scholar 

  • Toi M, Matsumoto T, Bando H (2001) Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol 2:667–673

    Article  PubMed  CAS  Google Scholar 

  • Tome-Carneiro J, Larrosa M, Gonzalez-Sarrias A, Tomas-Barberan FA, Garcia-Conesa MT, Espin JC (2013) Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 19:6064–6093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648

    Article  PubMed  CAS  Google Scholar 

  • Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, Cao Q, Prensner JR, Rubin MA, Shah RB, Mehra R, Chinnaiyan AM (2008) Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10:177–188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vallianou NG, Evangelopoulos A, Schizas N, Kazazis C (2015) Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res 35:645–651

    CAS  PubMed  Google Scholar 

  • Wang R, Zheng Y, Kim H, Xu X, Cao L, Lahusen T, Lee M, Xiao C, Vassilopoulos A, Chen W (2008) Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell 32:11–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Lu JJ, He L, Yu Q (2011) Triptolide (TPL) inhibits global transcription by inducing proteasome-dependent degradation of RNA polymerase II. PLoS One 6:e23993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao H, Wang H, Zhang X, Tu Z, Bulinski C, Khrapunovich-Baine M, Angeletti RH, Horwitz SB (2012) Structural evidence for cooperative microtubule stabilization by Taxol and the endogenous dynamics regulator MAP 4. ACS Chem Biol 7:744–752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu T, Pang Q, Zhou D, Zhang A, Luo S, Wang Y, Yan X (2014) Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells. PLoS One 9:e105768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang H, Dou QP (2010) Targeting apoptosis pathway with natural terpenoids: implications for treatment of breast and prostate cancer. Curr Drug Targets 11:733–744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang S, Chen J, Guo Z, Xu XM, Wang L, Pei XF, Yang J, Underhill CB, Zhang L (2003) Triptolide inhibits the growth and metastasis of solid tumors. Mol Cancer Ther 2:65–72

    PubMed  CAS  Google Scholar 

  • Yang S, Wen H, Zhang G, Zhao S, Luo Y, Lu Q (2009) Triptolide evaluates DNA methylation level of matrix metalloproteinase 9 gene in human fibrosarcoma HT-1080 cells. China J Chin Mat Med 34:611

    CAS  Google Scholar 

  • Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-αB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuasa Y, Nagasaki H, Akiyama Y, Sakai H, Nakajima T, Ohkura Y, Takizawa T, Koike M, Tani M, Iwai T (2005) Relationship between CDX2 gene methylation and dietary factors in gastric cancer patients. Carcinogenesis 26:193–200

    Article  PubMed  CAS  Google Scholar 

  • Yuasa Y, Nagasaki H, Akiyama Y, Hashimoto Y, Takizawa T, Kojima K, Kawano T, Sugihara K, Imai K, Nakachi K (2009) DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients. Int J Cancer 124:2677–2682

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, Chen Y, Li R, Liu Y, Wen L, Zhang C (2010a) Triptolide alters histone H3K9 and H3K27 methylation state and induces G0/G1 arrest and caspase dependent apoptosis in multiple myeloma in vitro. Toxicology 267:70–79

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, Zeng LL, Chen Y, Li R, Liu Y, Wen L, Cheng YQ, Zhang C (2010b) Effects of triptolide on histone acetylation and HDAC8 expression in multiple myeloma. Chin J Cancer Res 22:148–155

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, B. et al. (2017). Signaling Pathways of Anticancer Plants: Action and Reaction. In: Akhtar, M., Swamy, M. (eds) Anticancer Plants: Clinical Trials and Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8216-0_11

Download citation

Publish with us

Policies and ethics