Skip to main content

A Synoptic Study on Fault Testing in Reversible and Quantum Circuits

  • Conference paper
  • First Online:
Algorithms and Applications

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 88))

  • 486 Accesses

Abstract

Reversible computation, whose special class is quantum computation, arises from the desire to reduce power dissipation, which can be zero under ideal physical circumstances. Nowadays, error correction and fault testing are of utmost importance for the physical implementation of reversible and quantum circuits in a noisy environment. In this paper, we review various fault models in reversible and quantum circuits. In classical reversible circuits, we review (i) test pattern generation for Single Missing Gate Fault (SMGF), Partial Missing Gate Fault (PMGF), and Multiple Missing Gate Fault (MMGF) models and (ii) show that Universal Test Set (UTS) can be used to detect any of these faults. However, classical fault models do not capture all the logical failures found in quantum circuits. In quantum circuits, we review (i) depolarizing faults, initialization inaccuracy and measurement inaccuracy, and (ii) give some remedial strategies to deal with these fault models. Finally, we show that for a special class of quantum operators, detection of SMGF is sufficient to detect fault due to multiple occurrences of the gate also. Further, we argue with an example that it may not be possible to generate test patterns to detect any arbitrary SMGF in a quantum circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrett, M.D., Schätz, T., Chiaverini, J., Leibfried, D., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Ozeri, R., et al.: Quantum information processing with trapped ions. In: AIP Conference Proceedings, vol. 770, pp. 350–358. AIP (2005)

    Google Scholar 

  2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Google Scholar 

  3. Biamonte, J.D., Allen, J.S., Perkowski, M.A.: Fault models for quantum mechanical switching networks. J. Electron. Test. 26(5), 499–511 (2010)

    Google Scholar 

  4. Cormen, T.H.: Introduction to Algorithms. MIT press, Cambridge (2009)

    Google Scholar 

  5. Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16(6), 507–531 (1986)

    Google Scholar 

  6. Gottesman, D.: Stabilizer codes and quantum error correction (1997). arXiv preprint quant-ph/9705052

    Google Scholar 

  7. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996)

    Google Scholar 

  8. Knill, E., Laflamme, R., Ashikhmin, A., Barnum, H., Viola, L., Zurek, W.H.: Introduction to quantum error correction (2002). arXiv preprint quant-ph/0207170

    Google Scholar 

  9. Knill, E., Laflamme, R., Viola, L.: Theory of quantum error correction for general noise. Phys. Rev. Lett. 84(11), 2525 (2000)

    Google Scholar 

  10. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Google Scholar 

  11. Lee, S., Lee, S.-J., Kim, T., Lee, J.-S., Biamonte, J., Perkowski, M.: The cost of quantum gate primitives. J. Mult. Valued Log. Soft Comput. 12 (2006)

    Google Scholar 

  12. Li, C., Liu, L., Pang, X.: A dynamic probability fault localization algorithm using digraph. In: 2009 Fifth International Conference on Natural Computation, August 2009, vol. 6, pp. 187–191 (2009)

    Google Scholar 

  13. Majumdar, R., Basu, S., Mukhopadhyay, P., Sur-Kolay, S.: Error tracing in linear and concatenated quantum circuits (2016). arXiv preprint arXiv:1612.08044

  14. Majumdar, R., Saini, S.: A novel design of reversible 2: 4 decoder. In: 2015 International Conference on Signal Processing and Communication (ICSC), pp. 324–327. IEEE (2015)

    Google Scholar 

  15. Mondal, B., Das, P., Pradyut, S., Chakraborty, S.: A comprehensive fault diagnosis technique for reversible logic circuits. Comp. Electr. Eng. 40(7), 2259–2272 (2014)

    Google Scholar 

  16. Munro, W.J., Nemoto, K., Spiller, T.P., Barrett, S.D., Kok, P., Beausoleil, R.G.: Efficient optical quantum information processing. J. Opt. B: Quantum Semiclassical Opt. 7(7), S135 (2005)

    Google Scholar 

  17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge university press, Cambridge (2010)

    Google Scholar 

  18. Obenland, K.M., Despain, A.M., Turchette, T.Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J., et al.: Impact of errors on a quantum computer architecture (1996)

    Google Scholar 

  19. Peres, Asher: Reversible logic and quantum computers. Phys. Rev. A 32(6), 3266 (1985)

    Article  MathSciNet  Google Scholar 

  20. Rahaman, H., Kole, D.K., Das, D.K., Bhattacharya, B.B.: On the detection of missing-gate faults in reversible circuits by a universal test set. In: 21st International Conference on VLSI Design. VLSID 2008. pp. 163–168. IEEE (2008)

    Google Scholar 

  21. Saligram, R., Hegde, S.S., Kulkarni, S.A., Bhagyalakshmi, H.R., Venkatesha, M.K.: Design of fault tolerant reversible multiplexer based multi-boolean function generator using parity preserving gates. Int. J. Comput. Appl. 66(19) (2013)

    Google Scholar 

  22. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)

    Google Scholar 

  23. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Google Scholar 

  24. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)

    Google Scholar 

  25. Strauch, F.W., Johnson, P.R., Dragt, A.J., Lobb, C.J., Anderson, J.R., Wellstood, F.C.: Quantum logic gates for coupled superconducting phase qubits. Physical Rev. Lett. 91(16), 167005 (2003)

    Google Scholar 

  26. Surhonne, A.P., Chattopadhyay, A., Wille, R.: Automatic test pattern generation for multiple missing gate faults in reversible circuits. In: International Conference on Reversible Computation, pp. 176–182. Springer (2017)

    Google Scholar 

  27. Thapliyal, H., Ranganathan, N.: Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. ACM J. Emerg. Technol. Comput. Syst. (JETC) 6(4), 14 (2010)

    Google Scholar 

  28. Tommaso, T.: Reversible computing. In: Automata, Languages and Programming, pp. 632–644 (1980)

    Google Scholar 

  29. Wille, R., Drechsler, R.: Bdd-based synthesis of reversible logic for large functions. In: Proceedings of the 46th Annual Design Automation Conference, pp. 270–275. ACM (2009)

    Google Scholar 

  30. Zamani, M., Farazmand, N., Tahoori, M.B.: Fault masking and diagnosis in reversible circuits. In: 16th IEEE European Test Symposium (ETS), pp. 69–74. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritajit Majumdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dey, R., Bandyopadhyay, P., Chandra, S., Majumdar, R. (2018). A Synoptic Study on Fault Testing in Reversible and Quantum Circuits. In: Das, S., Chaki, N. (eds) Algorithms and Applications . Smart Innovation, Systems and Technologies, vol 88. Springer, Singapore. https://doi.org/10.1007/978-981-10-8102-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8102-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8101-9

  • Online ISBN: 978-981-10-8102-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics