Skip to main content

TDZ: Mode of Action, Use and Potential in Agriculture

  • Chapter
  • First Online:
Thidiazuron: From Urea Derivative to Plant Growth Regulator

Abstract

Strong cytokinin effects of thidiazuron (TDZ) in many plant species have been observed since its discovery in the 1970s. Several of these effects, such as cell division stimulatory activity, anti-senescence, anti-stress activity and ethylene production stimulation, have been adopted by agriculturalists and horticulturalists for a wide range of use. TDZ has been shown to promote the growth of various fruits, delay senescence of cut and potted flowers, increase stress tolerance and yield of several crops and cause defoliation of cotton. In this chapter, the mechanisms of how TDZ affects the desired traits are described, and the literature provides evidences reviewed. The information given here should convince everyone that TDZ is not a mysterious substance but that it triggers classical cytokinin responses in plants as successfully as natural cytokinins, no matter whether directly or indirectly. A direct TDZ effect is mediated through the activation of all the cytokinin receptors in plants and their downstream associated signalling pathways. The indirect effect of TDZ is considered to be its ability to inhibit the enzyme cytokinin oxidase/dehydrogenase which degrades cytokinins. This should lead to the elevation of endogenous cytokinin levels; however, it is not possible to distinguish whether the cytokinin effect was the effect of TDZ or the effect of endogenous cytokinins, since both share the same binding site in the proteins and the mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad A, Agulloä C, Cunat AC et al (2004) Preparation and promotion of fruit growth in kiwifruit of fluorinated N-phenyl-N′-1,2,3-thiadiazol-5-yl ureas. J Agric Food Chem 52:4675–4683

    Article  CAS  PubMed  Google Scholar 

  • Abeles FB (1966) Mechanism of action of abscission accelerators. Physiol Plant 20:442–454

    Article  Google Scholar 

  • Abeles FB, Dunn LJ, Morgens P et al (1988) Induction of 33-kD and 60-kD peroxidases during ethylene-induced senescence of cucumber cotyledons. Plant Physiol 87:609–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arima Y, Oshima K, Shudo K (1995) Evolution of a novel urea-type cytokinin: horticultural uses of forchlorfenuron. Acta Hortic 394:75–84

    Article  CAS  Google Scholar 

  • Arndt F, Rusch R, Stilfried HV (1976) SN 49537, a new cotton defoliant. Plant Physiol 57:S–99

    Google Scholar 

  • Bagheri H, Sedaghathour S (2013) Effect of thidiazuron and naphthalene acetic acid (NAA) on the vase life and quality of cut Alestroemeria hybrida. J Ornamental Hort Plants 3:111–116

    Google Scholar 

  • Balibrea Lara ME, Gonzalez Garcia MC, Fatima T et al (2004) Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16:1276–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckett RP, van Staden J (1992) The effect of thidiazuron on the yield of salinity stressed wheat. Ann Bot 70:47–51

    Article  CAS  Google Scholar 

  • Bilyeu KD, Cole JL, Laskey JG et al (2001) Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant Physiol 125:378–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandstatter I, Kieber JJ (1998) Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell 10:1009–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner WG, Ramireddy E, Heyl A et al (2012) Gene regulation by cytokinin in Arabidopsis. Front Plant Sci 3:8. https://doi.org/10.3389/fpls.2012.00008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner WG, Romanov GA, Kollmer I et al (2005) Immediate early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome wide expression profiling reveal novel cytokinin sensitive processes and suggest cytokinin action through transcriptional cascades. Plant Mol Biol 44:314–333

    Google Scholar 

  • Brown KM (1997) Ethylene and abscission. Physiol Plant 100:567–576

    Article  CAS  Google Scholar 

  • Brownlee BG, Hall RH, Whitty CD (1975) 3-Methyl-2-butenal: an enzymatic degradation product of the cytokinin, N-6-(delta-2 isopentenyl) adenine. Can J Biochem 53:37–41

    Article  CAS  PubMed  Google Scholar 

  • Bruce MI, Zwar JA (1966) Cytokinin activity of some substituted ureas and thioureas. Proc R Soc Lond Ser B 165:245–265

    Article  CAS  Google Scholar 

  • Cary AJ, Liu W, Howell SH (1995) Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol 107:1075–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cathey GW (1986) Physiology of defoliation in cotton production. In: Mauney JR, Stewart JM (eds) Cotton physiology. The Cotton Foundation, Memphis, pp 143–154

    Google Scholar 

  • Chamani E, Irving DE, Joyce DC et al (2006) Studies with thidiazuron on the vase life of cut rose flowers. J Appl Hortic 8:42–44

    Google Scholar 

  • Chang H, Jones ML, Banowetz GM et al (2003) Overproduction of cytokinins in petunia flowers transformed with PSAG12-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiol 132:2174–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatfield JM, Armstrong DJ (1986) Regulation of cytokinin oxidase activity in callus tissues of Phaseolus vulgaris L. cv Great Northern. Plant Physiol 80:493–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernyaďev II (1994) Effect of 6-benzylaminopurine and thidiazuron on photosynthesis in crop plants. Photosynthetica 30:287–292

    Google Scholar 

  • Chernyaďev II (2009) The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress (review). Appl Biochem Microbiol 45:351–362

    Article  CAS  Google Scholar 

  • Chory J, Reinecke D, Sim S et al (1994) A role for cytokinins in de-etiolation in Arabidopsis (det mutants have an altered response to cytokinins). Plant Physiol 104:339–347

    Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR et al (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • D’Agostino IB, Deruere J, Kieber JJ (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol 124:1706–1717

    Google Scholar 

  • Debata A, Murty KS (1981) Relation between leaf and panicle senescence in rice. Indian J Exp Biol 19:1183–1184

    Google Scholar 

  • Dewitte W, Scofield S, Alcasabas AA et al (2007) Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. PNAS USA 104:14537–14542

    Google Scholar 

  • Dhiman MR, Guleria MS, Parkash C et al (2015) Effect of different chemical compounds on leaf chlorophyll content and postharvest quality of Lilium. Int J Hort 5:1–6. https://doi.org/10.5376/ijh.2015.05.0018

    Google Scholar 

  • Dwivedi SK, Arora A, Singh VP et al (2017) Induction of water deficit tolerance in wheat due to exogenous application of plant growth regulators: membrane stability, water relations and photosynthesis. Photosynthetica. https://doi.org/10.1007/s11099-017-0695-2

  • El-Beltagy AS, Hall MA (1974) Effect of water stress upon endogenous ethylene levels in Vicia faba. New Phytol 73:47–59

    Article  CAS  Google Scholar 

  • Elfving DC, Cline RA (1993) Benzyladenine and other chemicals for thinning ‘Empire’ apple trees. J Am Soc Hort Sci 118:593–598

    CAS  Google Scholar 

  • Famiani F, Battistelli A, Moscatello S et al (1999) Thidiazuron affects growth, ripening and quality of Actinidia deliciosa. J Hort Sci Biotech 74:375–380

    Article  CAS  Google Scholar 

  • Ferrante A, Hunter DA, Hackett WP (2002b) Thidiazuron – a potent inhibitor of leaf senescence in Alstroemeria. Postharvest Biol Technol 25:333–338

    Article  CAS  Google Scholar 

  • Ferrante A, Hunter D, Hackett W et al (2001) TDZ: a novel tool for preventing leaf yellowing in Alstroemeria flowers. Hortic Sci 36.: Poster:599

    Google Scholar 

  • Ferrante A, Mensuali-Sodi A, Serra G (2009) Effect of thidiazuron and gibberellic acid on leaf yellowing of cut stock flowers. Cent Eur J Biol 4:61–468

    Google Scholar 

  • Ferrante A, Mensuali-Sodi A, Serra G et al (2002a) Effects of ethylene and cytokinins on vase life of cut Eucalyptus parvifolia Cambage branches. Plant Growth Regul 38:119–125

    Article  CAS  Google Scholar 

  • Ferrante A, Mensuali-Sodi A, Serra G et al (2003) Treatment with thidiazuron for preventing leaf yellowing in cut tulips, and chrysanthemum. Acta Hortic 624:357–363

    Article  CAS  Google Scholar 

  • Ferrante A, Mensuali-sodi A, Tognoni F et al (2005) Postharvest studies on leaf yellowing of chrysanthemum cut flowers. Adv Hortic Sci 19:81–82

    Google Scholar 

  • Ferrante A, Trivellini A, Mensuali-Sodi A (2012) Interaction of 1-methylcyclopropene and thidiazuron on cut stock flowers vase life. Open Hort J 5:1–5

    Article  CAS  Google Scholar 

  • Ferrante A, Trivellini A, Serra A (2011) Benzyladenine and thidiazuron postharvest treatments for preserving cut lily flowers. Acta Hortic 900:301–307

    Article  CAS  Google Scholar 

  • Ferrante A, Vernieri P, Serra G et al (2004) Changes in abscisic acid during leaf yellowing of cut stock flowers. Plant Growth Regul 43:127–134

    Article  CAS  Google Scholar 

  • Flores S, Tobin EM (1988) Cytokinin modulation of LHCP mRNA levels: the involvement of post-transcriptional regulation. Plant Mol Biol 11:409–415

    Article  CAS  PubMed  Google Scholar 

  • Forshey CG (1987) A review of chemical fruit thinning. Proc NE Fruit Meet 93:68–73

    Google Scholar 

  • Galuszka P, Popelková H, Werner T et al (2007) Biochemical characterization and histochemical localization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabaccum L. J Plant Growth Regul 26:255–267

    Article  CAS  Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  CAS  PubMed  Google Scholar 

  • Gan S, Amasino RM (1997) Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiol 113:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grbić V, Bleecker AB (1995) Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J 8:595–602

    Google Scholar 

  • Greenboim-Wainberg Y, Maymon I, Borochov R et al (2004) Cross talk between gibberellin and cytokinin: the Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. Plant Cell 17:92–102

    Google Scholar 

  • Greene DW (1995) Thidiazuron effects on fruit set, fruit quality, and return bloom of apples. Hortic Sci 30:1238–1240

    CAS  Google Scholar 

  • Grossmann K (1991) Induction of leaf abscission in cotton is a common effect of urea- and adenine-type cytokinins. Plant Physiol 95:234–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hare PD, Van Staden J (1994) Inhibitory effect of thidiazuron on the activity of cytokinin oxidase isolated from soybean callus. Plant Cell Physiol 35:1121–1125

    Article  CAS  Google Scholar 

  • Hatami M, Hatamzadeh A, Ghasemnezhad M et al (2013) Antioxidant enzymatic protection during Pelargonium plant leaf senescence is mediated by thidazuron. Trakia J Sci 11:152–157

    Google Scholar 

  • Hatamzadeh A, Rezvanypour S, Asil MH (2012) Postharvest life of Alstroemeria cut flowers is extended by thidiazuron and benzyladenine. South West J Hort Biol Env 3:41–53

    Google Scholar 

  • Hauska G, Trebst A, Koetter C et al (1975) 1,2,3-Thiadiazolyl-phenyl-ureas, new inhibitors of photosynthetic and respiratory energy conservation. Z Naturforsch C J Biosci 30:505–510

    Google Scholar 

  • Hensel LL, Grbić V, Baumgarten DA et al (1993) Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5:553–564

    Google Scholar 

  • Hodgson RH, Snyder RH (1988) Thidiazuron effects on Malvaceae; corn, (Zea mays); and soybean, (Glycine max). Weed Technol 2:342–349

    Article  CAS  Google Scholar 

  • Hothorn M, Dabi T, Chory J (2011) Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nat Chem Biol 7:766–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houba-Hérin N, Pethe C, d’Alayer J et al (1999) Cytokinin oxidase from Zea mays: purification, cDNA cloning and expression in moss protoplasts. Plant J 17:615–626

    Article  PubMed  Google Scholar 

  • Hunter DA, Yoo SD, Butcher SM et al (1999) Expression of 1-aminocyclopropane-1-carboxylate oxidase during leaf ontogeny in white clover. Plant Physiol 120:131–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichimura K, Hiraya T (1999) Effect of silver thiosulfate complex (STS) in combination with sucrose on the vase life of cut sweet pea flowers. J Jpn Soc Hort Sci 68:23–27

    Article  CAS  Google Scholar 

  • Inoue T, Higuchi M, Hashimoto Y et al (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063

    Google Scholar 

  • Itai A, Tanabe K, Tamura F et al (1995) Synthetic cytokinins control persimmon fruit shape, size and quality. J Hort Sci 70:867–873

    CAS  Google Scholar 

  • Jiang CZ, Wu L, Macnish AJ et al (2009) Thidiazuron, a non-metabolized cytokinin, shows promise in extending the life of potted plants. Acta Hortic 847:59–66

    Article  CAS  Google Scholar 

  • Jing HC, Schippers JH, Hille J et al (2005) Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. J Exp Bot 56:2915–2923

    Google Scholar 

  • Jo YS, Cho HS, Park MY et al (2003) Comparison of CPPU effects on fruit development in several actinidia species. Acta Hortic 610:539–543

    Article  CAS  Google Scholar 

  • Jordi W, Schapendonk A, Davelaar E et al (2000) Increased cytokinin levels in transgenic PSAG12-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning. Plant Cell Environ 23:279–289

    Article  CAS  Google Scholar 

  • Jordi W, Stoopen GM, Kelepouris K et al (1995) Gibberellin-induced delay of leaf senescence of Alstroemeria cut flowering stems is not caused by an increase in the endogenous cytokinin content. J Plant Growth Regul 14:121–127

    Article  CAS  Google Scholar 

  • Kaur P, Singh K (2015) Influence of growth regulators on physiology and senescence of cut stems of Chrysanthemum (Chrysanthemum morifolium Ramat) Var. Thai Ching Queen IJAPRR 2:31–41

    Google Scholar 

  • Kaviani M, Mortazavi SN (2013) Effect of nitric oxide and thidiazuron on Lilium cut flowers during postharvest. Int J Agron Plant Prod 4:664–669

    Google Scholar 

  • Kefford NP, Bruce MI, Zwar JA (1973) Retardation of leaf senescence by urea cytokinins in Raphanus sativus. Phytochemistry 12:995–1003

    Article  CAS  Google Scholar 

  • Kiba T, Yamada H, Sato S et al (2003) The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:868–874

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Ryu H, Hong SH et al (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. PNAS USA 103:814–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopečný D, Briozzo P, Popelková H et al (2010) Phenyl- and benzylurea cytokinins as competitive inhibitors of cytokinin oxidase/dehydrogenase: a structural study. Biochimie 92:1052–1062

    Article  PubMed  CAS  Google Scholar 

  • Koprna R, De Diego N, Dundálková L et al (2016) Use of cytokinins as agrochemicals. Bioorg Med Chem 24:484–492

    Article  CAS  PubMed  Google Scholar 

  • Kraepiel Y, Miginiac E (1997) Photomorphogenesis and phytohormones. Plant Cell Environ 20:807–812

    Article  CAS  Google Scholar 

  • Kusnetsov VV, Oelmüller R, Sarwat MI et al (1994) Cytokinins, abscisic acid and light affect accumulation of chloroplast proteins in Lupinus luteus cotyledons without notable effect on steady-state mRNA levels. Planta 194:318–327

    Article  CAS  Google Scholar 

  • Laureys F, Dewitte W, Witters E et al (1998) Zeatin is indispensable for the G2-M transition in tobacco BY-2 cells. FEBS Lett 426:29–32

    Article  CAS  PubMed  Google Scholar 

  • Leibfried A, To JPC, Stehling S et al (2005) WUSCHEL controls meristem size by direct transcriptional regulation of cytokinin inducible response regulators. Nature 438:1172–1175

    Article  CAS  PubMed  Google Scholar 

  • Leonard RT, Nell TA (2004) Short-term pulsing improves postharvest leaf quality of cut oriental lilies. Hort Tech 14:405–411

    Google Scholar 

  • Leshem YY, Wills RBH (1998) Harnessing senescence delaying gases nitric oxide and nitrous oxide: a navel approach to postharvest control of fresh horticultural produce. Biol Plant 41:1–100

    Article  CAS  Google Scholar 

  • Lomin SN, Krivosheev DM, Steklov MY et al (2015) Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J Exp Bot 66:1851–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macnish AJ, Jiang CZ, Reid MS (2010) Treatment with thidiazuron improves opening and vase life of iris flowers. Postharvest Biol Technol 56:77–84

    Article  CAS  Google Scholar 

  • Mähönen AP, Bonke M, Kaupinnen L et al (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14:2938–2943

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik MN, Din S (1997) Efficacy of thidiazuron defoliant in cotton cultivars varying in maturity. Pak Cottons 41:36–42

    Google Scholar 

  • Malik MN, Din S, Makhdum MI (1991) Accelerated boll dehiscence with thidiazuron. Trop Agric 68:149–150

    CAS  Google Scholar 

  • Malik MN, Din S, Makhdum MI et al (2002) Use of thidiazuron as harvest-aid in early and late planted cotton. Int J Agric Biol 4:71–73

    CAS  Google Scholar 

  • Masferrer A, Arro M, Manzano D et al (2002) Overexpression of Arabidopsis thaliana farnesyl diphosphate synthase (FPS1S) in transgenic Arabidopsis induces a cell death/senescence-like response and reduced cytokinin levels. Plant J 30:123–132

    Google Scholar 

  • Mayak S, Dilley DR (1976) Regulation of senescence in carnation (Dianthus caryophylus). Plant Physiol 58:663–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayak S, Halevy AH (1972) Interrelationships of ethylene and abscisic acid in the control of rose petal senescence. Plant Physiol 50:341–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mik V, Szüčová L, Šmehilová M et al (2011) N9-substituted derivatives of kinetin: effective anti-senescence agents. Phytochemistry 72:821–831

    Article  CAS  PubMed  Google Scholar 

  • Miller CO, Skoog F, Von Saltza MH et al (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Amer Chem Soc 77:1392

    Article  CAS  Google Scholar 

  • Mok MC, Martin RC, Dobrev PI et al (2005) Topolins and hydroxylated thidiazuron derivatives are substrates of cytokinin o-glucosyltransferase with position specificity related to receptor recognition. Plant Physiol 137:1057–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok MC, Mok DWS (1985) The metabolism of [14C] thidiazuron in callus tissues of Phaseolus lunatus. Physiol Plant 65:427–432

    Article  CAS  Google Scholar 

  • Mok MC, Mok DWS, Amstrong DJ et al (1982) Cytokinin activity of N-phenyl-N-1,2,3-thidiazol-5-ylurea (thidiazuron). Phytochemistry 21:1509–1511

    Article  CAS  Google Scholar 

  • Morris RO, Bilyeu KD, Laskey JG et al (1999) Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochem Biophys Res Commun 255:328–333

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi SN, Talebi SF, Naderi RA et al (2011) Regulation of ethylene biosynthesis by nitric oxide and thidiazuron during postharvest of rose. J Med Plant Res 5:5177–5183

    CAS  Google Scholar 

  • Mothes K, Engelbrecht L (1963) On the activity of a kinetin-like root factor. Life Sci 11:852–857

    Article  Google Scholar 

  • Murch SJ, Saxena PK (2001) Molecular fate of thidiazuron and its effects on auxin transport in hypocotyls tissues of Pelargonium x hortorum Bailey. Plant Growth Regul 35:269–275

    Article  CAS  Google Scholar 

  • Mutui TM, Emongor VN, Hutchinson MJ (2003) Effect of benzyladenine on the vase life and keeping quality of Alstroemeria cut flowers. J Agric Sci Technol 5:91–105

    Google Scholar 

  • Mutui TM, Mibus H, Serek M (2005) Effects of thidiazuron, ethylene, abscisic acid and dark storage on leaf yellowing and rooting of Pelargonium cuttings. J Hortic Sci Biotechnol 80:543–550

    Article  CAS  Google Scholar 

  • Mutui TM, Mibus H, Serek M (2007) Influence of thidiazuron, ethylene, abscisic acid and dark storage on the expression levels of ethylene receptors (ETR) and ACC synthase (ACS) genes in Pelargonium. Plant Growth Regul 53:87–96

    Article  CAS  Google Scholar 

  • Nagar S, Arora A, Singh VP et al (2015) Effect of cytokinin analogues on cytokinin metabolism and stress responsive genes under osmotic stress in wheat. Bioscan 10:67–72

    CAS  Google Scholar 

  • Nisler J, Kopečný D, Končitíková R et al (2016) Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase. Plant Mol Biol 92:235–248

    Article  CAS  PubMed  Google Scholar 

  • Pavlista AD (2003) Thidiazuron, a cytokinin-like compound, enhances fungicidal activity against early blight in potato. Acta Hortic 619:145–152

    Article  CAS  Google Scholar 

  • Petri JL, Schuck E, Leite GB (2001) Effects of thidiazuron (tdz) on fruiting of temperate tree fruits. Rev Bras Frutic 23:513–517

    Article  Google Scholar 

  • Rashotte AM, Mason MG, Hutchison CE et al (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. PNAS USA 103:11081–11085

    Google Scholar 

  • Redig P, Shaul O, Inze D et al (1996) Levels of endogenous cytokinins, indole-3-acetic acid and abscisic acid during the cell cycle of synchronized tobacco BY-2 cells. FEBS Lett 391:175–180

    Article  CAS  PubMed  Google Scholar 

  • Reid MS (1995) Ethylene in plant growth, development, and senescence. In: Davis PJ (ed) Plant hormones. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0473-9_23

    Google Scholar 

  • Reynolds AG, Wardle DA, Zurowski C et al (1992) Phenylureas CPPU and thidiazuron affect yield components, fruit composition, and storage potential of four seedless grape selections. J Am Soc Hort Sci 117:85–89

    CAS  Google Scholar 

  • Richmond AE, Lang A (1957) Effect of kinetin on protein content and survival of detached Xanthium leaves. Sci NY 125:650–651

    Article  CAS  Google Scholar 

  • Riefler M, Novak O, Strnad M et al (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riou-Khamlichi C, Huntley R, Jacqmard A et al (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541–1544

    Google Scholar 

  • Rivero RM, Kojima M, Gepstein A et al (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. PNAS USA 104:19631–19636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanov GA, Lomin SN, Schmülling T (2006) Biochemical characteristics and ligand-binding properties of Arabidopsis cytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct binding assay. J Exp Bot 57:4051–4058

    Google Scholar 

  • Sakakibara H (2003) Nitrate-specific and cytokinin-mediated nitrogen signaling pathways in plants. J Plant Res 116:253–257

    Article  CAS  PubMed  Google Scholar 

  • Sankhla N, Mackay WA, Davis TD (2003) Reduction of flower abscission and leaf senescence in cut Phlox inflorescences by thidiazuron. Acta Hort 628:837–841

    Article  CAS  Google Scholar 

  • Sankhla N, Mackay WA, Davis TD (2005) Effect of thidiazuron on senescence of flowers in cut inflorescences of Lupinus densiflorus benth. Acta Hortic 669:239–244

    Article  CAS  Google Scholar 

  • Schaller GE, Kieber JJ, Shiu S (2008) Two-component signalling elements and histidyl-aspartyl phosphorelays. In: Somerville C, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, pp 1–12

    Google Scholar 

  • Schaller GE, Street IH, Kieber JJ (2014) Cytokinin and the cell cycle. Curr Opin Plant Biol 21:7–15

    Article  CAS  PubMed  Google Scholar 

  • Schippers JHM, Breeze E, Buchanan-Wollaston V (2008). A role for cytokinin in the onset of leaf senescence by ethylene in Arabidopsis. Molecular aspects of ageing and the onset of leaf senescence. Schippers JHMn.d. s.n. 164 p. Doctoral thesis

    Google Scholar 

  • Schulz H, Arndt F (1973) 1,2,3-Thiadiazole plant growth retardants. From Ger. Offen.DE 2214632 A1 19731004

    Google Scholar 

  • Scofield S, Dewitte W, Nieuwland J et al (2013) The Arabidopsis homeobox gene SHOOT MERISTEMLESS has cellular and meristem-organisational roles with differential requirements for cytokinin and CYCD3 activity. Plant J 75:53–66

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Letham DS, Palni LMS (1992) Cytokinin biochemistry in relation to leaf senescence. 7. Endogenous cytokinin levels and exogenous applications of cytokinins in relation to sequential leaf senescence of tobacco. Physiol Plant 86:388–397

    Article  CAS  Google Scholar 

  • Spíchal L, Rakova NY, Riefler M et al (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45:1299–1305

    Article  PubMed  Google Scholar 

  • Stern R, Shargal A, Flaishman M (2003) Thidiazuron increases fruit size of ‘Spadona’ and ‘Coscia’ pear (Pyrus communis L.) J Hortic Sci Biotechnol 78:51–55

    Article  CAS  Google Scholar 

  • Stolz A, Riefler M, Lomin SN et al (2011) The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant J 67:157–168

    Article  CAS  PubMed  Google Scholar 

  • Suttle JC (1983) Effect of the defoliant thidiazuron on ethylene production. Plant Physiol 72:S-121

    Google Scholar 

  • Suttle JC (1984) Effect of the defoliant thidiazuron on ethylene evolution from mung bean hypocotyl segments. Plant Physiol 75:902–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suttle JC (1985) Involvement of ethylene in the action of the cotton defoliant thidiazuron. Plant Physiol 78:272–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suttle JC (1986) Cytokinin-induced ethylene biosynthesis in non senescing cotton leaves. Plant Physiol 82:930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suttle JC, Hultstrand JF (1991) Ethylene-induced leaf abscission in cotton seedlings. The physiological bases for age-dependent differences in sensitivity. Plant Physiol 95:29–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Miwa K, Ishikawa K et al (2001) The Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins. Plant Cell Physiol 42:107–113

    Google Scholar 

  • Talebi SF, Mortazavi SN, Naderi RA et al (2013) Role of nitric oxide and Thidiazuron on changes of pigments during postharvest in Rosa (Cv. ‘Sensiro’). Int J Agron Plant Prod 4:121–126

    Google Scholar 

  • Taniguchi M, Kiba T, Sakakidara H et al (1998) Expression of Arabidopsis response regulator homologues is induced by cytokinins and nitrate. FEBS Lett 429:259–262

    Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    Article  CAS  PubMed  Google Scholar 

  • Tirtashi ZB, Hashemabadi D, Kaviani B et al (2014) Effect of thidiazuron and salicylic acid on the vase life and quality of Alstroemeria (Alstroemeria hybrida L .cv. ‘Modena’) cut flower. J Ornamental Plants 4:163–168

    Google Scholar 

  • To JPC, Deruere J, Maxwell BB et al (2007) Cytokinin regulates type-A Arabidopsis response regulator activity and protein stability via two-component phosphorelay. Plant Cell 19:3901–3914

    Google Scholar 

  • To JPC, Haberer G, Ferreira FJ et al (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signalling. Plant Cell 16:658–671

    Google Scholar 

  • Ueguchi C, Sato S, Kato T et al (2001) The AHK4 gene involved in the cytokinin-signalling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol 42:751–755

    Article  CAS  PubMed  Google Scholar 

  • Uthairatanakij A, Jeenbuntug J, Buanong M et al (2007) Effect of thidiazuron pulsing on physiological changes of cut tuberose flower (Polianthes tuberosa L.) Acta Hortic 755:477–480

    Article  CAS  Google Scholar 

  • Van Staden J (1973) Changes in endogenous cytokinin levels during abscission and senescence of streptocarpus leaves. J Exp Bot 24:667–671

    Article  Google Scholar 

  • Vogel JP, Woeste KE, Theologis A et al (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. PNAS USA 95:4766–4771

    Google Scholar 

  • Weaver LM, Gan S, Quirino B et al (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol 37:455–469

    Article  CAS  PubMed  Google Scholar 

  • Werner T, Motyka V, Laucou V et al (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Google Scholar 

  • Whitty CD, Hall RH (1974) A cytokinin oxidase in Zea mays. Can J Biochem 52:789–799

    Article  CAS  PubMed  Google Scholar 

  • Wingler A, von Schaewen A, Leegood RC et al (1998) Regulation of leaf senescence by cytokinin, sugars, and light. Effect on NADH-dependent hydroxypyruvate reductase. Plant Physiol 116:329–335

    Article  CAS  PubMed Central  Google Scholar 

  • Woeste KE, Vogel JP, Kieber JJ (1999) Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings. Physiol Plant 105:478–484

    Article  CAS  Google Scholar 

  • Yamada H, Suzuki T, Terada K et al (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Yang YZ, Lin DC, Guo ZY (1992) Promotion of fruit development in cucumber (Cucumis sativus) by thidiazuron. Sci Hortic 50:47–51

    Article  CAS  Google Scholar 

  • Yaronskaya E, Vershilovskaya I, Poers Y et al (2006) Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta 224:700–709

    Article  CAS  PubMed  Google Scholar 

  • Yip WK, Yang SF (1986) Effect of thidiazuron, a cytokinin active urea derivative, in cytokinin-dependent ethylene production systems. Plant Physiol 80:515–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon TM, Richter H (1990) Seasonal changes in stomatal responses of sweet cherry and plum to water status in detached leaves. Physiol Plant 80:520–526

    Article  CAS  Google Scholar 

  • Yu Y, Yang SF, Corse J et al (1981) Structures of cytokinins influence synergistic production of ethylene. Phytochemistry 20:1191–1195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank professor Miroslav Strnad and Lukáš Spíchal for the valuable comments, which contributed to the final version of this chapter. I wish to thank my wife Tereza Nislerová for the English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Nisler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nisler, J. (2018). TDZ: Mode of Action, Use and Potential in Agriculture. In: Ahmad, N., Faisal, M. (eds) Thidiazuron: From Urea Derivative to Plant Growth Regulator. Springer, Singapore. https://doi.org/10.1007/978-981-10-8004-3_2

Download citation

Publish with us

Policies and ethics