Skip to main content

Organization of Plant Photosystem II and Photosystem I Supercomplexes

  • Chapter
  • First Online:
Membrane Protein Complexes: Structure and Function

Part of the book series: Subcellular Biochemistry ((SCBI,volume 87))

Abstract

In nature, plants are continuously exposed to varying environmental conditions. They have developed a wide range of adaptive mechanisms, which ensure their survival and maintenance of stable photosynthetic performance. Photosynthesis is delicately regulated at the level of the thylakoid membrane of chloroplasts and the regulatory mechanisms include a reversible formation of a large variety of specific protein-protein complexes, supercomplexes or even larger assemblies known as megacomplexes. Revealing their structures is crucial for better understanding of their function and relevance in photosynthesis. Here we focus our attention on the isolation and a structural characterization of various large protein supercomplexes and megacomplexes, which involve Photosystem II and Photosystem I, the key constituents of photosynthetic apparatus. The photosystems are often attached to other protein complexes in thylakoid membranes such as light harvesting complexes, cytochrome b 6 f complex, and NAD(P)H dehydrogenase. Structural models of individual supercomplexes and megacomplexes provide essential details of their architecture, which allow us to discuss their function as well as physiological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albanese P, Nield J, Alejandro J et al (2016) Isolation of novel PSII-LHCII megacomplexes from pea plants characterized by a combination of proteomics and electron microscopy. Photosynth Res 130(1–3):19–31

    Article  CAS  PubMed  Google Scholar 

  • Albertsson PÅ (2001) A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci 6(8):349–354

    Article  CAS  PubMed  Google Scholar 

  • Alboresi A, Caffarri S, Nogue F et al (2008) In silico and biochemical analysis of Physcomitrella patens photosynthetic antenna: identification of subunits which evolved upon land adaptation. PLoS One 3:e2033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335

    Article  CAS  PubMed  Google Scholar 

  • Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447:58–63

    Article  CAS  PubMed  Google Scholar 

  • Amunts A, Toporik H, Borovikova A et al (2010) Structure determination and improved model of plant photosystem I. J Biol Chem 285:3478–3486

    Article  CAS  PubMed  Google Scholar 

  • Aro EM, Suorsa M, Rokka A et al (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56:347–356

    Article  CAS  PubMed  Google Scholar 

  • Baena-Gonzalez E, Aro EM (2002) Biogenesis, assembly and turnover of photosystem II units. Phil Trans R Soc Lond B 357:1451–1460

    Article  CAS  Google Scholar 

  • Bailey S, Walters RG, Jansson S et al (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213:794–801

    Article  CAS  PubMed  Google Scholar 

  • Ballottari M, Dall’Osto L, Morosinotto T et al (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282:8947–8958

    Article  CAS  PubMed  Google Scholar 

  • Balsera M, Arellano JB, Revuelta JL et al (2005) The 1.49 Å resolution crystal structure of PsbQ from photosystem II of Spinacia oleracea reveals a PPII structure in the N-terminal region. J Mol Biol 350:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Baradaran R, Berrisford JM, Minhas GS et al (2013) Crystal structure of the entire respiratory complex I. Nature 494:443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barera S, Pagliano C, Pape T et al (2012) Characterization of PSII-LHCII supercomplexes isolated from pea thylakoid membrane by one-step treatment with alpha- and beta-dodecyl-D-maltoside. Philos Trans R Soc Lond Ser B Biol Sci 367(1608):3389–3399

    Article  CAS  Google Scholar 

  • Bellafiore S, Barneche F, Peltier G et al (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895

    Article  CAS  PubMed  Google Scholar 

  • Bennett J (1977) Phosphorylation of chloroplast membrane polypeptides. Nature 269:344–346

    Article  CAS  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630–635

    Article  CAS  PubMed  Google Scholar 

  • Betterle N, Ballottari M, Zorzan S et al (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284(22):15255–15266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boekema EJ, Dekker JP, van Heel MG et al (1987) Evidence for a trimeric organization of the photosystem I complex from the thermophililc cyanobacterium Synechococcus sp. FEBS Lett 217(2):283–286

    Article  CAS  Google Scholar 

  • Boekema EJ, Hankamer B, Bald D et al (1995) Supramolecular structure of the photosystem-II complex from green plants and cyanobacteria. Proc Natl Acad Sci U S A 92(1):175–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boekema EJ, van Roon H, Dekker JP (1998) Specific association of photosystem II and light-harvesting complex II in partially solubilized photosystem II membranes. FEBS Lett 424:95–99

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, van Roon H, Calkoen F et al (1999a) Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Biochemistry 38:2233–2239

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, van Roon H, van Breemen JFL et al (1999b) Supramolecular organization of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Eur J Biochem 266:444–452

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, van Breemen JFL, van Roon H et al (2000) Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. J Mol Biol 301:1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, Jensen PE, Schlodder E et al (2001) Green plant photosystem I binds light-harvesting complex I on one side of the complex. Biochemistry 40:1029–1036

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, Folea M, Kouřil R (2009) Single particle electron microscopy. Photosynth Res 102:189–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaventura C, Myers J (1969) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 189:366–383

    Article  CAS  PubMed  Google Scholar 

  • Broess K, Trinkunas G, van Hoek A et al (2008) Determination of the excitation migration time in photosystem II – consequences for the membrane organization and charge separation parameters. Biochim Biophys Acta 1777:404–409

    Article  CAS  PubMed  Google Scholar 

  • Büchel C (2015) Evolution and function of light harvesting proteins. J Plant Physiol 172:62–75

    Article  PubMed  CAS  Google Scholar 

  • Burrows PA, Sazanov LA, Svab Z et al (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17:868–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busch A, Hippler M (2011) The structure and function of eukaryotic photosystem I. Biochim Biophys Acta 1807:864–877

    Article  CAS  PubMed  Google Scholar 

  • Caffarri S, Kouřil R, Kereïche S et al (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28:3052–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caffarri S, Tibiletti T, Jennings RC (2014) A comparison between plant photosystem I and photosystem II architecture and functioning. Curr Protein Pept Sci 15(4):296–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderone V, Trabucco M, Vujicić A et al (2003) Crystal structure of the PsbQ protein of photosystem II from higher plants. EMBO Rep 4(9):900–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Dong G, Wu L et al (2016) A nucleus-encoded chloroplast protein YL1 is involved in chloroplast development and efficient biogenesis of chloroplast ATP synthase in rice. Sci Rep 6:32295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correa-Galvis V, Poschmann G, Melzer M et al (2016) PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Nat Plants 2:15225

    Article  CAS  PubMed  Google Scholar 

  • Crepin A, Santabarbara S, Caffarri S (2016) Biochemical and spectroscopic characterization of highly stable photosystem II supercomplexes from Arabidopsis. J Biol Chem 291(36):19157–19171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dainese P, Bassi R (1991) Subunit stoichiometry of the chloroplast photosystem-II antenna system and aggregation state of the component chlorophyll-a/b binding-proteins. J Biol Chem 266:8136–8142

    CAS  PubMed  Google Scholar 

  • Daum B, Nicastro D, Austin J et al (2010) Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell 22:1299–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Bianchi S, Dall’Osto L, Tognon G et al (2008) Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell 20:1012–1028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supermolecular organization of the thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39

    Article  CAS  PubMed  Google Scholar 

  • Dietzel L, Bräutigam K, Steiner S et al (2011) Photosystem II supercomplex remodeling serves as an entry mechanism for state transitions in Arabidopsis. Plant Cell 23(8):2964–2977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drop B, Webber-Birungi M, Fusetti F et al (2011) Photosystem I of Chlamydomonas reinhardtii contains nine light-harvesting complexes (Lhca) located on one side of the core. J Biol Chem 286(52):44878–44887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drop B, Webber-Birungi M, Yadav SKN et al (2014) Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii. Biochim Biophys Acta 1837:63–72

    Article  CAS  PubMed  Google Scholar 

  • Dudkina NV, Oostergetel GT, Braun HP et al (2010a) Row-like organization of ATP synthase in intact mitochondria determined by cryo-electron tomography. Biochim Biophys Acta 1797:272–277

    Article  CAS  PubMed  Google Scholar 

  • Dudkina NV, Kouřil R, Bultema JB et al (2010b) Imaging of organelles by electron microscopy reveals protein-protein interactions in mitochondria and chloroplasts. FEBS Lett 584:2510–2515

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Leiro R, Scheres SH (2016) Unravelling biological macromolecules with cryo-electron microscopy. Nature 537:339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galka P, Santabarbara S, Thi THK et al (2012) Functional analyses of the plant photosystem I-light-harvesting complex II supercomplex reveal that light-harvesting complex II loosely bound to photosystem II is a very efficient antenna for photosystem I in state II. Plant Cell 24:2963–2978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerotto C, Franchin C, Arrigoni G et al (2015) In vivo identification of photosystem II light harvesting complexes interacting with photosystem II subunit S. Plant Physiol 168:1747–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hankamer B, Barber J, Boekema EJ (1997) Structure and membrane organization of photosystem II in green plants. Annu Rev Plant Physiol Plant Mol Biol 48:641–671

    Article  CAS  PubMed  Google Scholar 

  • Harrer R (2003) Associations between light-harvesting complexes and photosystem II from Marchantia polymorpha L. determined by two- and three-dimensional electron microscopy. Photosynth Res 75:249–258

    Article  CAS  PubMed  Google Scholar 

  • Ifuku K, Nakatsu T, Kato H et al (2004) Crystal structure of the PsbP protein of photosystem II from Nicotiana tabacum. EMBO Rep 5(4):362–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R et al (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464(7292):1210–1203

    Article  CAS  PubMed  Google Scholar 

  • Jansson S (1994) The light–harvesting chlorophyll a/b binding-proteins. Biochim Biophys Acta 1184:1–19

    Article  CAS  PubMed  Google Scholar 

  • Jansson S, Andersen B, Scheller HV (1996) Nearest-neighbor analysis of higher-plant photosystem I holocomplex. Plant Physiol 112:409–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvi S, Suorsa M, Paakkarinen V et al (2011) Optimized native gel systems for separation of thylakoid protein complexes: novel super- and mega-complexes. Biochem J 439:207–214

    Article  CAS  PubMed  Google Scholar 

  • Järvi S, Suorse M, Aro EM (2015) Photosystem II repair in plant chloroplasts – regulation, assisting proteins and shared components with photosystem II biogenesis. Biochim Biophys Acta 1847:900–909

    Article  PubMed  CAS  Google Scholar 

  • Jensen PE, Rosgaard L, Knoetzel J et al (2002) Photosystem I activity is increased in the absence of the PSI-G subunit. J Biol Chem 277(4):2798–2803

    Article  CAS  PubMed  Google Scholar 

  • Johnson MP, Goral TK, Duffy CD et al (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23(4):1468–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan P, Fromme P, Witt HT et al (2001) Three-dimensional structure of photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff H (2013) Architectural switches in plant thylakoid membranes. Photosynth Res 116:481–487

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff H, Haase W, Wegner S et al (2007) Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplasts. Biochemistry 46:11169–11176

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff H, Lenhert S, Büchel C et al (2008) Probing the organization of photosystem II in photosynthetic membranes by atomic force microscopy. Biochemistry 47:431–440

    Article  CAS  PubMed  Google Scholar 

  • Klimmek F, Sjodin A, Noutsos C et al (2006) Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. Plant Physiol 140:793–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knispel RW, Kofler C, Boicu M et al (2012) Blotting protein complexes from native gels to electron microscopy grids. Nat Methods 9:182–184

    Article  CAS  PubMed  Google Scholar 

  • Kofer W, Koop HU, Wanne G et al (1998) Mutagenesis of the genes encoding subunits A, C, H, I, J and K of the plastid NAD(P)H-plastoquinone-oxidoreductase in tobacco by polyethylene glycol-mediated plastome transformation. Mol Gen Genet 258:166–173

    Article  CAS  PubMed  Google Scholar 

  • Kouřil R, van Oosterwijk N, Yakushevska AE et al (2005a) Photosystem I: a search for green plant trimers. Photochem Photobiol Sci 4:1091–1094

    Article  PubMed  CAS  Google Scholar 

  • Kouřil R, Zygadlo A, Arteni AA et al (2005b) Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana. Biochemistry 44:10935–10940

    Article  PubMed  CAS  Google Scholar 

  • Kouřil R, Oostergetel GT, Boekema EJ (2011) Fine structure of granal thylakoid membrane organization using cryo electron tomography. Biochim Biophys Acta 1807:368–374

    Article  PubMed  CAS  Google Scholar 

  • Kouřil R, Dekker JP, Boekema EJ (2012) Supramolecular organization of photosystem II in green plants. Biochim Biophys Acta 1817:2–12

    Article  PubMed  CAS  Google Scholar 

  • Kouřil R, Wientjes E, Bultema JB et al (2013) High-light vs. low-light: effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim Biophys Acta 1827:411–419

    Article  PubMed  CAS  Google Scholar 

  • Kouřil R, Strouhal O, Nosek L et al (2014) Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase supercomplex. Plant J 77:568–576

    Article  PubMed  CAS  Google Scholar 

  • Kouřil R, Nosek L, Bartoš J et al (2016) Evolutionary loss of light-harvesting proteins Lhcb6 and Lhcb3 in major land plant groups – break-up of current dogma. New Phytol 210:808–814

    Article  PubMed  CAS  Google Scholar 

  • Kovacs L, Damkjær J, Kereïche S (2006) Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18:3106–3120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koziol AG, Borza T, Ishida KI et al (2007) Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms. Plant Physiol 143:1802–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer DM, Avenson TJ, Edwards GE (2004) Dynamics flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9:349–357

    Article  CAS  PubMed  Google Scholar 

  • Krauss N, Schubert WD, Klukas O et al (1996) Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat Struct Biol 3(11):965–973

    Article  CAS  PubMed  Google Scholar 

  • Kurisu G, Zhang H, Smith JL et al (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Li XP, BjörkmanO Shich C et al (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Google Scholar 

  • Liu Z, Yan H, Wang K et al (2004) Crystal structure of spinach light-harvesting complex at 2.72 Å resolution. Nature 428:287–292

    Article  CAS  PubMed  Google Scholar 

  • Lunde C, Jensen PE, Haldrup A et al (2000) The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature 408:613–615

    Article  CAS  PubMed  Google Scholar 

  • Mazor Y, Borovikova A, Nelson N (2015) The structure of plant photosystem I super-complex at 2.8 Å resolution. Elife 4:e07433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minagawa J (2011) State transitions – the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim Biophys Acta 1807:897–905

    Article  CAS  PubMed  Google Scholar 

  • Morosinotto T, Bassi R, Frigerio S et al (2006) Biochemical and structural analyses of a higher plant photosystem II supercomplex of a photosystem I-less mutant of barely. Consequences of a chronic over-reduction of the plastoquinone pool. FEBS J 273:4616–4630

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C et al (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  CAS  PubMed  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Ann Rev Plant Biol 57:521–565

    Article  CAS  Google Scholar 

  • Nield J, Barber J (2006) Refinement of the structural model for the photosystem II supercomplex of higher plants. Biochim Biophys Acta 1757:353–361

    Article  CAS  PubMed  Google Scholar 

  • Nield J, Orlova EV, Morris EP et al (2000) 3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nat Struct Biol 7(1):44–47

    Article  CAS  PubMed  Google Scholar 

  • Nosek L, Semchonok D, Boekema EJ et al (2017) Structural variability of plant photosystem II megacomplexes in thylakoid membranes. Plant J 89:104–111

    Article  CAS  PubMed  Google Scholar 

  • Pagliano C, Barera S, Chimirri F et al (2012) Comparison of the alpha and beta isomeric forms of the detergent n-dodecyl-D-maltoside for solubilizing photosynthetic complexes from pea thylakoid membranes. Biochim Biophys Acta 1817:1506–1515

    Article  CAS  PubMed  Google Scholar 

  • Pagliano C, Saracco G, Barber J (2013) Structural, functional and auxiliary proteins of photosystem II. Photosynth Res 116:167–188

    Article  CAS  PubMed  Google Scholar 

  • Pagliano C, Nield J, Marsano F et al (2014) Proteomic characterization and three-dimensional electron microscopy study of PSII-LHCII supercomplexes from higher plants. Biochim Biophys Acta 1837:1454–1462

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Li M, Wan T et al (2011) Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat Struct Mol Biol 18:309–315

    Article  CAS  PubMed  Google Scholar 

  • Peng LW, Shikanai T (2011) Supercomplex formation with photosystem I is required for the stabilization of the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Physiol 155:1629–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng LW, Shimizu H, Shikanai T (2008) The chloroplast NAD(P)H dehydrogenase complex interacts with photosystem I in Arabidopsis. J Biol Chem 283:34873–34879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng LW, Fukao Y, Fujiwara M et al (2009) Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. Plant Cell 21:3623–3640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peter GF, Thornber JP (1991) Biochemical-composition and organization of higher-plant photosystem-II light-harvesting pigment-proteins. J Biol Chem 266:16745–16754

    CAS  PubMed  Google Scholar 

  • Pribil M, Pesaresi P, Hertle A et al (2010) Role of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flow. PLoS Biol 8:e1000288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin X, Suga M, Kuang T et al (2015) Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348(6238):989–995

    Article  CAS  PubMed  Google Scholar 

  • Schubert WD, Klukas O, Krauss N et al (1997) Photosystem I of Synechococcus elongatus at 4 Å resolution: comprehensive structure analysis. J Mol Biol 272(5):741–769

    Article  CAS  PubMed  Google Scholar 

  • Semchonok DA, Li M, Bruce BD et al (2016) Cyro-EM structure of a tetrameric cyanobacterial photosystem I complex reveals novel subunit interactions. Biochim Biophys Acta 1857:1619–1626

    Article  CAS  PubMed  Google Scholar 

  • Shapiguzov A, Ingelsson B, Samol I et al (2010) The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis. Proc Natl Acad Sci U S A 107:4782–4787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikanai T (2016) Chloroplast NDH: a different enzyme with a structure similar to that of respiratory NADH dehydrogenase. Biochim Biophys Acta 1857:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Shikanai T, Endo T, Hashimoto T et al (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci U S A 95:9705–9709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Standfuss R, van Scheltinga ACT, Lamborghini M et al (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light harvesting complex at 2.5 Å resolution. EMBO J 24:919–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroebel D, Choquet Y, Popot JL et al (2003) An atypical haem in the cytochrome b 6 f complex. Nature 426:413–418

    Article  CAS  PubMed  Google Scholar 

  • Tietz S, Puthiyaveetil S, Enlow HM et al (2015) Functional implications of photosystem II crystal formation in photosynthetic membranes. J Biol Chem 290:14091–14106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokutsu R, Kato N, Bui KH et al (2012) Revisiting the supramolecular organization of photosystem II in Chlamydomonas reinhardtii. J Biol Chem 287:31574–31581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Oort B, Alberts M, de Bianchi S et al (2010) Effect of antenna-depletion in photosystem II on excitation energy transfer in Arabidopsis thaliana. Biophys J 98:922–931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Roon H, van Breemen JFL, de Werd FL et al (2000) Solubilization of green plant thylakoid membranes with n-dodecyl-α,D-maltoside. Implications for the structural organization of the photosystem II, photosystem I, ATP synthase and cytochrome b 6 f complexes. Photosynth Res 64:155–166

    Article  PubMed  Google Scholar 

  • Varotto C, Pesaresi P, Jahns P et al (2002) Single and double knockouts of the genes for photosystem I subunits G, K, and H of Arabidopsis. Effects on photosystem I composition, photosynthetic electron flow, and state transitions. Plant Physiol 129:616–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Su X, Cao P et al (2016) Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. Nature 534(7605):69–74

    Article  CAS  PubMed  Google Scholar 

  • Wientjes E, Oostergetel GT, Jansson S et al (2009) The role of Lhca complexes in the supramolecular organization of higher plant photosystem I. J Biol Chem 284:7803–7810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wientjes E, Drop B, Kouřil R et al (2013) During state 1 to state 2 transition in Arabidopsis thaliana, the photosystem II supercomplex gets phosphorylated but does not disassemble. J Biol Chem 288:32821–32826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittig I, Schägger H (2005) Advantages and limitations of clear-native PAGE. Proteomics 5:4338–4346

    Article  CAS  PubMed  Google Scholar 

  • Wittig I, Karas M, Schägger H (2007) High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol Cell Proteomics 6:1215–1225

    Article  CAS  PubMed  Google Scholar 

  • Wollman FA (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 20:3623–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav KNS, Semchonok DA, Nosek L et al (2017) Supercomplexes of plant photosystem I with cytochrome b6f, light-harvesting complex II and NDH. Biochim Biophys Acta 1858:12–20

    Article  CAS  PubMed  Google Scholar 

  • Yakushevska AE, Jensen PE, Keegstra W et al (2001a) Supermolecular organization of photosystem II and its associated light-harvesting antenna in Arabidopsis thaliana. Eur J Biochem 268:6020–6021

    Article  CAS  PubMed  Google Scholar 

  • Yakushevska AE, Ruban AV, Jensen PE et al (2001b) Supermolecular organization of photosystem II and its associated light-harvesting antenna in the wild- type and npq4 mutant of Arabidopsis thaliana. In: PS2001 proceedings: 12th international congress on photosynthesis. CSIRO Publishing, Melbourne, p S5

    Google Scholar 

  • Yakushevska AE, Keegstra W, Boekema EJ et al (2003) The structure of photosystem II in Arabidopsis: localization of the CP26 and CP29 antenna complexes. Biochemistry 42:806–813

    Article  CAS  Google Scholar 

  • Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol 67:81–106

    Article  CAS  PubMed  Google Scholar 

  • Yokono M, Takabayashi A, Akimoto S et al (2015) A megacomplex composed of both photosystem reaction centres in higher plants. Nat Commun 6:6675

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant project LO1204 (Sustainable development of research in the Centre of the Region Haná) from the National Program of Sustainability I from the Ministry of Education, Youth and Sports, Czech Republic. Dr. Roman Kouřil was supported by a Marie Curie Career Integration Grant call FP7-PEOPLE-2012-CIG (322139). We acknowledge funding by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 675006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Kouřil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kouřil, R., Nosek, L., Semchonok, D., Boekema, E.J., Ilík, P. (2018). Organization of Plant Photosystem II and Photosystem I Supercomplexes. In: Harris, J., Boekema, E. (eds) Membrane Protein Complexes: Structure and Function. Subcellular Biochemistry, vol 87. Springer, Singapore. https://doi.org/10.1007/978-981-10-7757-9_9

Download citation

Publish with us

Policies and ethics