Skip to main content

Flexible Sensors for Biomedical Application

  • Chapter
  • First Online:
Environmental, Chemical and Medical Sensors

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

The research paradigm for biosensing devices has been focussed to explore flexible sensors. Here, the term “flexible” is indicative of the substrate which has sufficient degree of deformability so that it could be suitably placed at any place. Advances in flexible sensing technologies can be observed by the number of smart products in the market as well as with the number of publications exponentially coming out every year in which diversified development in terms of device operation and performance have been explored. However, as is the case for most new developments, there are several challenges and opportunities which this relatively newfangled field is facing, both in the basic and applied aspects. These challenges and opportunities basically lie in three broad areas, namely design, fabrication, and integration of the developed flexible systems to improve the purpose-oriented sensing capabilities, such as sensing characteristics, functionality, so and so forth. In this chapter, fundamental aspect of various sensing films and associated mechanism has been illustrated. With this article, state-of-the-art work on the promising flexible sensing platforms for biomedical applications is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MM, Aguirre SD, Xu Y, Filipe CD, Pelton R, Li Y (2009) Detection of DNA using bioactive paper strips. Chem Commun 43:6640–6642

    Article  Google Scholar 

  • Bu N, Ueno N, Fukuda O (2007) Monitoring of respiration and heartbeat during sleep using a flexible piezoelectric film sensor and empirical mode decomposition. In: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th annual international conference of the IEEE 22 Aug 2007, pp 1362–1366. IEEE

    Google Scholar 

  • Chen Y, Lu B, Chen Y, Feng X (2015) Breathable and stretchable temperature sensors inspired by skin. Scientific reports, p 5

    Google Scholar 

  • Choi MC, Kim Y, Ha CS (2008) Polymers for flexible displays: from material selection to device applications. Prog Polym Sci 33(6):581–630

    Article  Google Scholar 

  • Chossat JB, Park YL, Wood RJ, Duchaine V (2013) A soft strain sensor based on ionic and metal liquids. IEEE Sens J 13(9):3405–3414

    Article  Google Scholar 

  • Courbat J, Briand D, Wöllenstein J, De Rooij NF (2011) Polymeric foil optical waveguide with inkjet printed gas sensitive film for colorimetric sensing. Sens Actuators B: Chem 160(1):910–915

    Article  Google Scholar 

  • De Gennes PG, Brochard-Wyart F, Quéré D (2013) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer Science & Business Media, Berlin, 20 Mar 2013

    Google Scholar 

  • Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26(6):2811–2821

    Article  Google Scholar 

  • Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM (2008) Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Func Mater 18(7):1097–1104

    Article  Google Scholar 

  • Dong S, Xi J, Wu Y, Liu H, Fu C, Liu H, Xiao F (2015) High loading MnO 2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells. Anal Chim Acta 1(853):200–206

    Article  Google Scholar 

  • Fan Z, Liu B, Liu X, Li Z, Wang H, Yang S, Wang J (2013) A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor. Electrochim Acta 30(109):602–608

    Article  Google Scholar 

  • Fernicola A, Scrosati B, Ohno H (2006) Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices. Ionics 12(2):95–102

    Article  Google Scholar 

  • Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W (2014) A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat commun 4:5

    Google Scholar 

  • Guerfi A, Dontigny M, Charest P, Petitclerc M, Lagacé M, Vijh A, Zaghib K (2010) Improved electrolytes for Li-ion batteries: mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance. J Power Sources 195(3):845–852

    Article  Google Scholar 

  • Hsu HH, Chang CY, Cheng CH, Yu SH, Su CY, Su CY (2013) Fully room-temperature IGZO thin film transistors adopting stacked gate dielectrics on flexible polycarbonate substrate. Solid-State Electron 30(89):194–197

    Article  Google Scholar 

  • Hwang GT, Byun M, Jeong CK, Lee KJ (2015) Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv Healthcare Mat 4(5):646–658

    Article  Google Scholar 

  • Islam T, Mahboob MR, Khan SA (2015) A simple MOX vapor sensor on polyimide substrate for measuring humidity in ppm level. IEEE Sens J 15(5):3004–3013

    Article  Google Scholar 

  • Jeon JY, Ha TJ (2016) Waterproof electronic-bandage with tunable sensitivity for wearable strain sensors. ACS Appl Mater Interfaces 8(4):2866–2871

    Article  Google Scholar 

  • Kaempgen M, Roth S (2006) Transparent and flexible carbon nanotube/polyaniline pH sensors. J Electroanal Chem 586(1):72–76

    Article  Google Scholar 

  • Kim HK, Lee S, Yun KS (2011) Capacitive tactile sensor array for touch screen application. Sens Actuators, A 165(1):2–7

    Article  Google Scholar 

  • Kitova S, Minchev M, Danev G (2005) RF plasma treatment of polycarbonate substrates. J Optoelectron Adv Mat 7(5):2607–2612

    Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd ed, pp 1–23. Springer, Berlin

    Google Scholar 

  • Lechat C, Bunsell AR, Davies P, Piant A (2006) Mechanical behaviour of polyethylene terephthalate & polyethylene naphthalate fibres under cyclic loading. J Mat Sci 41(6):1745–1756

    Article  Google Scholar 

  • Lemaire E, Moser R, Borsa CJ, Shea H, Briand D (2015) Green paper-based piezoelectric material for sensors and actuators. Procedia Eng 1(120):360–363

    Article  Google Scholar 

  • Li C et al (2008) Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. J Microelectromech Syst 17(2):334–341

    Google Scholar 

  • Li R, Nie B, Digiglio P, Pan T (2014) Microflotronics: a flexible, transparent pressure-sensitive microfluidic film. Adv Funct Mat 24(39):6195–6203

    Article  Google Scholar 

  • Lipomi DJ, Vosgueritchian M, Tee BC, Hellstrom SL, Lee JA, Fox CH, Bao Z (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6(12):788–792

    Article  Google Scholar 

  • Liu G, Zheng B, Jiang Y, Cai Y, Du J, Yuan H, Xiao D (2012) Improvement of sensitive CuO NFs–ITO nonenzymatic glucose sensor based on in situ electrospun fiber. Talanta 15(101):24–31

    Article  Google Scholar 

  • Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46(8):1318–1320

    Article  Google Scholar 

  • Murphy CJ (2002) Peer reviewed: optical sensing with quantum dots, pp 520-A

    Google Scholar 

  • Nie B, Li R, Brandt JD, Pan T (2014) Iontronic microdroplet array for flexible ultrasensitive tactile sensing. Lab Chip 14(6):1107–1116

    Article  Google Scholar 

  • Peele JD, Gadsden RH, Crews R (1977) Semi-automated vs. visual reading of urinalysis dipsticks. Clin Chem 23(12):2242–2246

    Google Scholar 

  • Pradhan D, Niroui F, Leung KT (2010) High-performance, flexible enzymatic glucose biosensor based on ZnO nanowires supported on a gold-coated polyester substrate. ACS Appl Mater Interfaces 2(8):2409–2412

    Article  Google Scholar 

  • Pugia MJ, Lott JA, Profitt JA, Cast TK (1999) High-sensitivity dye binding assay for albumin in urine. J Clin Lab Anal 13(4):180–187

    Article  Google Scholar 

  • Ren TL, Tian H, Xie D, Yang Y (2012) Flexible graphite-on-paper piezoresistive sensors. Sensors 12(5):6685–6694

    Article  Google Scholar 

  • Trung TQ, Tien NT, Kim D, Jang M, Yoon OJ, Lee NE (2014) A flexible reduced graphene oxide field-effect transistor for ultrasensitive strain sensing. Adv Func Mater 24(1):117–124

    Article  Google Scholar 

  • Wang L, Luo J, Yin J, Zhang H, Wu J, Shi X, Crew E, Xu Z, Rendeng Q, Lu S, Poliks M (2010) Flexible chemiresistor sensors: thin film assemblies of nanoparticles on a polyethylene terephthalate substrate. J Mater Chem 20(5):907–915

    Article  Google Scholar 

  • Wright WW, Hallden-Abberton M (2002) “Polyimides” in Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim. doi:https://doi.org/10.1002/14356007.a21_253

  • Wu WY, Zhong X, Wang W, Miao Q, Zhu JJ (2010) Flexible PDMS-based three-electrode sensor. Electrochem Commun 12(11):1600–1604

    Article  Google Scholar 

  • Yan J, Ge L, Song X, Yan M, Ge S, Yu J (2012) Paper-based electrochemiluminescent 3D immunodevice for lab-on-paper, specific, and sensitive point-of-care testing. Chem-A Eur J 18(16):4938–4945

    Article  Google Scholar 

  • Yang Y, Zhang H, Lin ZH, Zhou YS, Jing Q, Su Y, Yang J, Chen J, Hu C, Wang ZL (2013) Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 7(10):9213–9222

    Article  Google Scholar 

  • Yang PK, Lin ZH, Pradel KC, Lin L, Li X, Wen X, He JH, Wang ZL (2015) Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano 9(1):901–907

    Article  Google Scholar 

  • Yeo JC, Lim CT (2016) Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst Nanoeng 26(2):16043

    Google Scholar 

  • Yu J, Ge L, Huang J, Wang S, Ge S (2011) Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 11(7):1286–1291

    Article  Google Scholar 

  • Zhang S, Lu X, Zhou Q, Li X, Zhang X, Li S (2009) Ionic liquids: physicochemical properties. Elsevier, Netherlands, 13 Jun 2009

    Google Scholar 

  • Zhao W, Chiuman W, Brook MA, Li Y (2007) Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. ChemBioChem 8(7):727–731

    Article  Google Scholar 

  • Zhu S, Du C, Fu Y (2009) Fabrication and characterization of rhombic silver nanoparticles for biosensing. Opt Mater 31(6):769–774

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, A., Pal, P. (2018). Flexible Sensors for Biomedical Application. In: Bhattacharya, S., Agarwal, A., Chanda, N., Pandey, A., Sen, A. (eds) Environmental, Chemical and Medical Sensors. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7751-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7751-7_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7750-0

  • Online ISBN: 978-981-10-7751-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics