Skip to main content

Applications of Remote Sensing and GIS in Water Quality Monitoring and Remediation: A State-of-the-Art Review

  • Chapter
  • First Online:
Water Remediation

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Recent advancements in the field of remote sensing and geographic information systems (GIS) have made it possible to conduct large-scale water remediation studies. Using improved spectral and spatial resolution sensors and geospatial modeling techniques, water quality parameters such as chlorophyll-a, algae bloom, turbidity, suspended sediments, and mineral content in water bodies including groundwater are being monitored at low cost and with greater accuracy. Integration of these technologies with field monitoring have successfully aided in identification of contamination zones and sources of contamination, and for developing strategies for remediation. High-resolution mapping of contamination zones will further help in allocating remediation efforts to the critically affected areas. This chapter investigates the status of ongoing research in the domain of remote sensing and GIS for water quality monitoring and management, and remediation of water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelmalik KW (2016) Role of statistical remote sensing for Inland water quality parameters prediction. The Egyptian Journal of Remote Sensing and Space Science

    Google Scholar 

  • Ahn HI, Chon HT (1999) Assessment of groundwater contamination using geographic information systems. Environmental Geochemistry and Health, 21(3):273–289

    Google Scholar 

  • Akbar TA, Hassan QK, Achari G (2014) Development of remote sensing based models for surface water quality. CLEAN–Soil, Air, Water, 42(8):1044–1051

    Google Scholar 

  • Al-Adamat RA, Foster ID, Baban SM (2003) Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Appl Geogr 23(4):303–324

    Google Scholar 

  • Alexander RB, Smith RA, Schwarz GE, Boyer EW, Nolan JV, Brakebill JW (2007) Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin. Environ Sci Technol 42(3):822–830

    Google Scholar 

  • Alparslan E, Aydöner C, Tufekci V, Tüfekci H (2007) Water quality assessment at Ömerli Dam using remote sensing techniques. Environ Monit Assess 135:391

    Google Scholar 

  • Arnold JG, Williams JR, Srinivasan R, King KW (1996) The soil and water assessment tool (SWAT) user’s manual. Temple, TX

    Google Scholar 

  • Asadi SS, Rajani G, Reddy MA (2007) Analysis and interpretation of groundwater contamination using remote sensing and GIS: a case study. Curr World Environ 2(2):115–126

    Google Scholar 

  • Babiker IS, Mohamed MA, Terao H, Kato K, Ohta K (2004) Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environ Int 29(8):1009–1017

    Google Scholar 

  • Babiker IS, Mohamed MA, Hiyama T, Kato K (2005) A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci Total Environ 345(1):127–140

    Google Scholar 

  • Basavarajappa HT, Manjunatha MC (2015) Groundwater quality analysis in Precambrian rocks of Chitradurga district, Karnataka, India using Geo-informatics technique. Aquat Procedia 4:1354–1365

    Google Scholar 

  • Brekke C, Solberg AH (2005) Oil spill detection by satellite remote sensing. Remote Sens Environ 95(1):1–13

    Google Scholar 

  • Bukata RP (2013) Retrospection and introspection on remote sensing of inland water quality: “Like Déjà Vu all over again”. J Great Lakes Res 39:2–5

    Google Scholar 

  • Chen J, Quan W (2012) Using Landsat/TM imagery to estimate nitrogen and phosphorus concentration in Taihu Lake, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5(1):273–280

    Google Scholar 

  • Chen S, Fang L, Zhang L, Huang W (2009) Remote sensing of turbidity in seawater intrusion reaches of Pearl River Estuary–a case study in Modaomen water way, China. Estuar Coast Shelf Sci 82(1):119–127

    Google Scholar 

  • Choubey VK, Subramanian V (1990) Nature of suspended solids and IRS1A-LISSI data: a case study of Tawa reservoir (Narmada Basin). Remote Sens Environ 34(3):207–215

    Article  Google Scholar 

  • Chu HJ, Liu CY, Wang CK (2013) Identifying the relationships between water quality and land cover changes in the tseng-wen reservoir watershed of Taiwan. Int J Environ Res Public Health 10(2):478–489

    Article  Google Scholar 

  • Corwin DL, Wagenet RJ (1996) Applications of GIS to the modeling of nonpoint source pollutants in the vadose zone: A conference overview. Journal of environmental quality 25(3):403–411

    Google Scholar 

  • Corwin DL, Loague K, Ellsworth TR (1998) GIS-based modeling of non-point source pollutants in the vadose zone. J Soil Water Conserv 53(1):34–38

    Google Scholar 

  • Curran PJ, Novo EMM (1988) The relationship between suspended sediment concentration and remotely sensed spectral radiance: a review. J Coast Res 351–368

    Google Scholar 

  • Digenis CJ (2005) The EO-1 mission and the advanced land imager. Lincoln Laboratory Journal 15(2):161

    Google Scholar 

  • Devred E, Turpie KR, Moses W, Klemas VV, Moisan T, Babin M, Toro-Farmer G, Forget MH, Jo YH (2013) Future retrievals of water column bio-optical properties using the Hyperspectral Infrared Imager (HyspIRI). Remote Sensing 5(12):6812–6837

    Google Scholar 

  • Dörnhöfer K, Göritz A, Gege P, Pflug B, Oppelt N (2016) Water constituents and water depth retrieval from Sentinel-2A—A first evaluation in an Oligotrophic Lake. Remote Sens 8(11):941

    Google Scholar 

  • Doerffer R, Fischer J (1994) Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods. Journal of Geophysical Research: Oceans 99(C4):7457–7466

    Google Scholar 

  • El Saadi AM, Yousry MM, Jahin HS (2014) Statistical estimation of rosetta branch water quality using multi-spectral data. Water Sci 28(1):18–30

    Google Scholar 

  • ESRI (1990) Understanding GIS the arc/info method. Environmental Systems Research Institute, Redlands, CA, USA

    Google Scholar 

  • Everitt JH, Yang C, Escobar DE, Webster CF, Lonard RI, Davis MR (1999) Using remote sensing and spatial information technologies to detect and map two aquatic macrophytes. J Aquat Plant Manag 37:71–80

    Google Scholar 

  • Fichot CG, Downing BD, Bergamaschi BA, Windham-Myers L, Marvin-DiPasquale M, Thompson DR, Gierach MM (2015) High-resolution remote sensing of water quality in the San Francisco Bay-Delta Estuary. Environ Sci Technol 50(2):573–583

    Article  Google Scholar 

  • Foerster S, Carrère V, Rast M, Staenz K (2016) Preface: The Environmental Mapping and Analysis Program (EnMAP) Mission: Preparing for Its Scientific Exploitation

    Google Scholar 

  • Fraser RH, Barten PK, Pinney DA (1998) Predicting stream pathogen loading from livestock using a geographical information system-based delivery model. J Environ Qual 27(4):935–945

    Article  CAS  Google Scholar 

  • Frere MH, Ross JD, Lane LJ (1980). The nutrient submodel. In: Knisel W (ed) CREAMS: a field model for chemicals, runoff and erosion from agricultural management systems, vol 26. USDA Conserv Res Rep, p 340

    Google Scholar 

  • Gholizadeh MH, Melesse AM, Reddi L (2016) Spaceborne and airborne sensors in water quality assessment. Int J Remote Sens 37(14):3143–3180

    Article  Google Scholar 

  • Giardino C, Candiani G, Zilioli E (2005) Detecting chlorophyll-a in Lake Garda using TOA MERIS radiances. Photogramm Eng Remote Sens 71(9):1045–1051

    Article  Google Scholar 

  • Giupponi C, Vladimirova I (2006) Ag-PIE: a GIS-based screening model for assessing agricultural pressures and impacts on water quality on a European scale. Sci Total Environ 359(1):57–75

    Article  CAS  Google Scholar 

  • Griffith JA (2002) Geographic techniques and recent applications of remote sensing to landscape-water quality studies. Water Air Soil Pollut 138(1):181–197

    Article  CAS  Google Scholar 

  • Griffith JA, Martinko EA, Whistler JL, Price KP (2002) Interrelationships among landscapes, NDVI, and stream water quality in the US Central Plains. Ecol Appl 12(6):1702–1718

    Article  Google Scholar 

  • Guanter L, Kaufmann H, Segl K, Foerster S, Rogass C, Chabrillat S, Straif C (2015) The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens 7(7):8830–8857

    Article  Google Scholar 

  • Harding LW, Itsweire EC, Esaias WE (1995) Algorithm development for recovering chlorophyll concentrations in the Chesapeake Bay using aircraft remote sensing, 1989–91. Photogramm Eng Remote Sens 61(2):177–185

    Google Scholar 

  • Hellweger FL, Schlosser P, Lall U, Weissel JK (2004) Use of satellite imagery for water quality studies in New York Harbor. Estuar Coast Shelf Sci 61(3):437–448

    Article  CAS  Google Scholar 

  • Hestir EL, Khanna S, Andrew ME, Santos MJ, Viers JH, Greenberg JA, Ustin SL (2008) Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sens Environ 112(11):4034–4047

    Article  Google Scholar 

  • Holme AM, Burnside DG, Mitchell AA (1987) The development of a system for monitoring trend in range condition in the arid shrublands of Western Australia. Rangel J 9(1):14–20

    Article  Google Scholar 

  • Huan H, Wang J, Teng Y (2012) Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: a case study in Jilin City of northeast China. Sci Total Environ 440:14–23

    Article  CAS  Google Scholar 

  • Hunter PD, Tyler AN, Carvalho L, Codd GA, Maberly SC (2010) Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in Eutrophic Lakes. Remote Sens Environ 114(11):2705–2718

    Article  Google Scholar 

  • Jensen JR, Hodgson ME, Garcia-Quijano M, Im J, Tullis JA (2009) A remote sensing and GIS-assisted spatial decision support system for hazardous waste site monitoring. Photogramm Eng Remote Sens 75(2):169–177

    Article  Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier, Amsterdam, p 194

    Google Scholar 

  • Jha MN, Levy J, Gao Y (2008) Advances in remote sensing for oil spill disaster management: state-of-the-art sensors technology for oil spill surveillance. Sensors 8(1):236–255

    Article  CAS  Google Scholar 

  • Jones KB, Riitters KH, Wickham JD, Tankersley RD Jr, O’Neill RV, Chaloud DJ, Neale AC (1997) An ecological assessment of the United States mid-Atlantic region: a landscape atlas. United States Environmental Protection Agency. Office of Research and Development, Washington DC, 20460. EPA/600/R-97/130

    Google Scholar 

  • Jupp DL, Kirk JT, Harris GP (1994) Detection, identification and mapping of cyanobacteria—using remote sensing to measure the optical quality of turbid inland waters. Mar Freshw Res 45(5):801–828

    Article  Google Scholar 

  • Kaba E, Philpot W, Steenhuis T (2014) Evaluating suitability of MODIS-Terra images for reproducing historic sediment concentrations in water bodies: Lake Tana, Ethiopia. Int J Appl Earth Obs Geoinf 26:286–297

    Article  Google Scholar 

  • Kallio K, Koponen S, Ylöstalo P, Kervinen M, Pyhälahti T, Attila J (2015) Validation of MERIS spectral inversion processors using reflectance, IOP and water quality measurements in boreal lakes. Remote Sens Environ 157:147–157

    Article  Google Scholar 

  • Kazakis N, Voudouris KS (2015) Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: modifying the DRASTIC method using quantitative parameters. J Hydrol 525:13–25

    Article  CAS  Google Scholar 

  • Keith DJ, Schaeffer BA, Lunetta RS, Gould RW Jr, Rocha K, Cobb DJ (2014) Remote sensing of selected water-quality indicators with the hyperspectral imager for the coastal ocean (HICO) sensor. Int J Remote Sens 35(9):2927–2962

    Article  Google Scholar 

  • Kelly JR, Harwell MA (1990) Indicators of ecosystem recovery. Environ Manag 14(5):527–545

    Article  Google Scholar 

  • Kilham NE, Roberts D, Singer MB (2012) Remote sensing of suspended sediment concentration during turbid flood conditions on the Feather River, California—a modeling approach. Water Resour Res 48:1

    Article  Google Scholar 

  • Kirk JTO (1983) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, p 509

    Google Scholar 

  • Knox RC, Sabatini DA, Canter LW (1993) Subsurface transport and fate processes. Lewis Publishers

    Google Scholar 

  • Kulkarni A (2011) Water quality retrieval from Landsat TM imagery. Procedia Comput Sci 6:475–480

    Article  Google Scholar 

  • Kumar DN, Reshmidevi TV (2013) Remote sensing applications in water resources. J Indian Inst Sci 93(2):163–188

    Google Scholar 

  • Kutser T (2012) The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters. Remote Sens Environ 123:334–338

    Article  Google Scholar 

  • Leifer I, Lehr WJ, Simecek-Beatty D, Bradley E, Clark R, Dennison P, Hu Y, Matheson S, Jones CE, Holt B, Reif M (2012) State of the art satellite and airborne marine oil spill remote sensing: application to the BP Deepwater Horizon oil spill. Remote Sens Environ 124:185–209

    Article  Google Scholar 

  • Lillesand TM, Kiefer RW (1994) Remote sensing and image interpretation, 3rd edn. John Wiley and Sons, New York

    Google Scholar 

  • Lim J, Choi M (2015) Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea. Environ Monit Assess 187(6):384

    Article  Google Scholar 

  • Liu Z, Li Y, Li Z (2009) Surface water quality and land use in Wisconsin, USA—a GIS approach. J Integr Environ Sci 6(1):69–89

    Article  Google Scholar 

  • Maidment DR (1996) GIS and hydrologic models of non-point source pollution in subsurface water. In: Applications of GIS to the Modeling of Non-Point Source Pollutants in the Vadose Zone, pp 163–174

    Google Scholar 

  • Markogianni V, Dimitriou E, Karaouzas I (2014) Water quality monitoring and assessment of an urban Mediterranean lake facilitated by remote sensing applications. Environ Monit Assess 186(8):5009–5026

    Article  CAS  Google Scholar 

  • Martins VS, Barbosa CCF, de Carvalho LAS, Jorge DSF, Lobo FDL, Novo EMLDM (2017) Assessment of Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to Amazon Floodplain Lakes. Remote Sensing 9(4):322

    Google Scholar 

  • Matthews MW, Bernard S, Winter K (2010) Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS. Remote Sens Environ 114(9):2070–2087

    Article  Google Scholar 

  • Mueller TG, Pusuluri NB, Mathias KK, Cornelius PL, Barnhisel RI, Shearer SA (2004) Map quality for ordinary kriging and inverse distance weighted interpolation. Soil Sci Soc Am J 68(6):2042–2047

    Article  CAS  Google Scholar 

  • Munn RE (1988) The design of integrated monitoring systems to provide early indications of environmental/ecological changes. Environ Monit Assess 11(3):203–217

    Article  CAS  Google Scholar 

  • Nas B, Berktay A (2010) Groundwater quality mapping in urban groundwater using GIS. Environ Monit Assess 160(1):215–227

    Article  CAS  Google Scholar 

  • NASA (2010) NASA images show oil’s invasion along Louisiana coast. National Aeronautics and Space Administration, https://www.nasa.gov/topics/earth/features/oil20100602.html. Accessed on 8 Sept 2017

  • Navulur KCS, Engel BA (1998) Groundwater vulnerability assessment to non-point source nitrate pollution on a regional scale using GIS. Trans ASAE 41(6):1671–1678

    Article  CAS  Google Scholar 

  • Nelson SA, Soranno PA, Cheruvelil KS, Batzli SA, Skole DL (2003) Regional assessment of lake water clarity using satellite remote sensing. Journal of Limnology 62(1s):27–32

    Google Scholar 

  • NOC (2009) National Oceanography Centre. Areas of research in the HERMIONE project, funded under the European Commission’s Framework Seven Programme, Southampton, UK

    Google Scholar 

  • Odermatt D, Gitelson A, Brando VE, Schaepman M (2012) Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens Environ 118:116–126

    Article  Google Scholar 

  • Oikonomidis D, Dimogianni S, Kazakis N, Voudouris K (2015) A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. J Hydrol 525:197–208

    Article  Google Scholar 

  • Ouyang D, Bartholic J, Selegean J (2005) Assessing sediment loading from agricultural croplands in the Great Lakes Basin. J Am Sci 1(2):14–21

    Google Scholar 

  • Palmer SC, Kutser T, Hunter PD (2015) Remote sensing of inland waters: challenges, progress and future directions. Remote Sens Environ 157:1–8

    Article  Google Scholar 

  • Petrovic M, Eljarrat E, Lopez de Alda MJ, Barceló D (2004) Endocrine disrupting compounds and other emerging contaminants in the environment: a survey on new monitoring strategies and occurrence data. Anal Bioanal Chem 378:549. https://doi.org/10.1007/s00216-003-2184-7

    Article  CAS  Google Scholar 

  • Ritchie JC, Cooper CM (2001) Remote sensing techniques for determining water quality: applications to TMDLs. In: TMDL Science Issues Conference, Water Environment Federation, Alexandria, VA, Mar 2001, pp 367–374

    Google Scholar 

  • Ritchie JC, Zimba PV, Everitt JH (2003) Remote sensing techniques to assess water quality. Photogramm Eng Remote Sens 69(6):695–704

    Article  Google Scholar 

  • Ritchie JC, McHenry JR, Schiebe FR, Wilson RB (1974) The relationship of reflected solar radiation and the concentration of sediment in the surface water of reservoirs, Remote Sensing of Earth Resources Vol. III (F. Shahrokhi, editor), The University of Tennessee Space Institute, Tullahoma, Tennessee, pp 57–72

    Google Scholar 

  • Robertson DM, Schwarz GE, Saad DA, Alexander RB (2009) Incorporating uncertainty into the ranking of SPARROW model nutrient yields from Mississippi/Atchafalaya River basin watersheds1. JAWRA J Am Water Resour Assoc 45(2):534–549

    Article  Google Scholar 

  • Secunda S, Collin ML, Melloul AJ (1998) Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon Region. J Environ Manage 54(1):39–57

    Article  Google Scholar 

  • Shaffer MJ, Hall MD, Wylie BK, Wagner DG (1996) NLEAP/GIS approach for identifying and mitigating regional nitrate-nitrogen leaching. In: Applications of GIS to the Modeling of Non-Point Source Pollutants in the Vadose Zone, pp 283–294

    Google Scholar 

  • Shen L, Xu H, Guo X (2012) Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework. Sensors 12(6):7778–7803

    Article  Google Scholar 

  • Simis SG, Peters SW, Gons HJ (2005) Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnol Oceanogr 50(1):237–245

    Article  CAS  Google Scholar 

  • Singh CK, Shashtri S, Mukherjee S, Kumari R, Avatar R, Singh A, Singh RP (2011) Application of GWQI to assess effect of land use change on groundwater quality in lower Shiwaliks of Punjab: remote sensing and GIS based approach. Water Resour Manag 25(7):1881–1898

    Article  Google Scholar 

  • Singh A, Jakubowski AR, Chidister I, Townsend PA (2013) A MODIS approach to predicting stream water quality in Wisconsin. Remote Sens Environ 128:74–86

    Article  Google Scholar 

  • Sinkevich MG Jr, Walter MT, Lembo AJ, Richards BK, Peranginangin N, Aburime SA, Steenhuis TS (2005) A GIS-based ground water contamination risk assessment tool for Pesticides. Groundw Monit Remediat 25(4):82–91

    Article  CAS  Google Scholar 

  • Sridhar BM, Vincent RK, Witter JD, Spongberg AL (2009) Mapping the total phosphorus concentration of biosolid amended surface soils using LANDSAT TM data. Science of the total environment 407(8):2894–2899

    Google Scholar 

  • Srinivasa Rao Y, Jugran DK (2003) Delineation of groundwater potential zones and zones of groundwater quality suitable for domestic purposes using remote sensing and GIS. Hydrol Sci J 48(5):821–833

    Article  Google Scholar 

  • Srivastava PK, Singh SK, Gupta M, Thakur JK, Mukherjee S (2013) Modeling impact of land use change trajectories on groundwater quality using remote sensing and GIS. Environ Eng Manag J (EEMJ) 12:12

    Google Scholar 

  • Tassan S (1993) An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters. Int J Remote Sens 14(6):1221–1229

    Article  Google Scholar 

  • Tebbs EJ, Remedios JJ, Harper DM (2013) Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline–alkaline, flamingo lake, using Landsat ETM+. Remote Sens Environ 135:92–106

    Article  Google Scholar 

  • Thirumalaivasan D, Karmegam M, Venugopal K (2003) AHP-DRASTIC: software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environ Model Softw 18(7):645–656

    Article  Google Scholar 

  • Tiktak A, van der Linden A, Leine I (1996) Application of GIS to the modeling of pesticide leaching on a regional scale in the Netherlands. In: Applications of GIS to the modeling of non-point source pollutants in the vadose zone, pp 259–281

    Google Scholar 

  • Toming K, Kutser T, Laas A, Sepp M, Paavel B, Nõges T (2016) First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery. Remote Sens 8(8):640

    Article  Google Scholar 

  • USGS (2016) At least one pharmaceutical chemical was detected in all 59 streams sampled. Department of the Interior, U.S. Geological Survey, Reston, VA. Accessed on 1 Sept 2017. Available at https://www.usgs.gov/news/pharmaceuticals-commonly-detected-small-streams-southeastern-united-states

  • Volpe V, Silvestri S, Marani M (2011) Remote sensing retrieval of suspended sediment concentration in shallow waters. Remote Sens Environ 115(1):44–54

    Article  Google Scholar 

  • Yenilmez F, Kuter N, Emil MK, Aksoy A (2011) Evaluation of pollution levels at an abandoned coal mine site in Turkey with the aid of GIS. Int J Coal Geol 86(1):12–19

    Article  CAS  Google Scholar 

  • Yüzügüllü O, Aksoy A (2011) Determination of Secchi Disc depths in Lake Eymir using remotely sensed data. Procedia-Soc Behav Sci 19:586–592

    Article  Google Scholar 

  • Zhang Y, Pulliainen JT, Koponen SS, Hallikainen MT (2003) Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland. IEEE Trans Geosci Remote Sens 41(3):622–629

    Article  Google Scholar 

  • Zhang Y, Zhang Y, Shi K, Zha Y, Zhou Y, Liu M (2016) A Landsat 8 OLI-Based, Semianalytical Model for Estimating the Total Suspended Matter Concentration in the Slightly Turbid Xin’anjiang Reservoir (China). IEEE J Sel Top Appl Earth Obs Remote Sens 9(1):398–413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenu Ramadas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramadas, M., Samantaray, A.K. (2018). Applications of Remote Sensing and GIS in Water Quality Monitoring and Remediation: A State-of-the-Art Review. In: Bhattacharya, S., Gupta, A., Gupta, A., Pandey, A. (eds) Water Remediation. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7551-3_13

Download citation

Publish with us

Policies and ethics