Skip to main content

Thermochemical Reforming of Wastes to Renewable Fuels

  • Chapter
  • First Online:
Energy for Propulsion

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Growing population and consequential rise in energy demand are contributors to overdependence of carbon based fossil fuels combustion for various applications which continues to increase the atmospheric CO2 to unrecyclable levels leading to anthropogenic global warming from insufficient CO2 capture and sequestration, and thus incomplete carbon cycle. Depleting fossil fuel reserves and concerns of CO2 emissions from fossil fuel combustion, along with the concerns of improper waste disposal poses great global challenges that need to be addressed for energy and environment sustainability. Many techniques for energy and fuel production from biomass and solid wastes have been examined in the recent past of which thermochemical reformation of wastes are dominant, compared to biochemical processes such as anaerobic digestion, as they provide high reaction rates from their high operational temperatures. This chapter serves the purpose of providing detailed scenario of thermochemical processes starting with classification to include pyrolysis, gasification, and hydrothermal conversion techniques. Gasification techniques offer efficient and effective transformation of solid biomass and wastes into gas/liquid fuels and value added materials. This technique offers clean energy production at high efficiency compared to other transformation techniques via syngas which can be used for combined heat and power generation, production of fuels for transportation using Fischer Tropsch synthesis, and production of value added chemicals. Challenges of gasification, which include tar residuals and low-grade feedstocks are explained in detail in the chapter including catalytic and sorption based tar removal techniques. Low grade or high moisture content feedstocks may need drying before gasification which can significantly lower the economic value and efficiency of gasification that depends on net energy density of the feedstock. Hydrothermal processing is beneficial for the conversion of high moisture content feedstock such as wet grass, algal biomass, municipal waste, and sludge to bio-oils, which can further be refined to produce liquid biofuels that helps to reduce fossil fuel requirement of gasoline, diesel, and other fuels used for transportation, energy, power purposes. Other thermochemical methods such as fast pyrolysis have also been examined during the past couple of decades for the production of bio-oils for biofuel synthesis. Catalytic conversion techniques for refining of the bio-crude and bio-oils produced from liquefaction and fast pyrolysis are also discussed with focus on hetero-atom removal such as hydrodeoxygenation and the challenges associated with it. This chapter provides a review on the various thermochemical reformation techniques, their advantages and drawbacks. It emphasizes on informing various advancements in terms of the reactors used, the operational parameters that control the reactions and the proposed reaction pathways for these techniques. A focus in this chapter on state of the art global scenario to develop these processes includes catalytic reforming of their products to achieve enhanced quality products and their corresponding challenges to produce clean and sustainable energy, fuels and value added products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MSW:

Municipal Solid Wastes

HD (LD):

PE High Density (Low Density) Polyethylene

PAH:

Poly Aromatic Hydrocarbon

FCC:

Fluid Catalytic Cracking

FT:

Fischer Tropsch

HMF:

5-Hydroxymethylfurfural

HDO:

Hydro De-oxygenation

HDS:

Hydro De-sulfurization

HTL:

Hydrothermal Liquefaction

DFT:

Density Functional Theory

FTIR:

Fourier Transform Infra-red

SEM:

Scanning Electron Microscope

DMF:

Dimethyl Furan

References

  1. Population Reference Bureau. 2016 World Population Data Sheet. 2015 World Population Data Sheet 23 (2016), https://doi.org/10.2307/1972177

  2. IEA. Key World Energy Statistics 2016. Statistics (Ber) 80 (2016), https://doi.org/10.1787/9789264039537-en

  3. B. Metz, O. Davidson, H. de Coninck, M. Loos, L. Meyer, IPCC Special Report on Carbon Dioxide Capture and Storage, vol. 2 (Cambridge University Press, New York, NY, United States, 2011)

    Google Scholar 

  4. USEPA. Advancing sustainable materials management: 2014 fact sheet. United States Environmental Protection Agency, Office of Emergency Managemaent, Washington, DC 20460, 22 (2016)

    Google Scholar 

  5. Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review (n.d)

    Google Scholar 

  6. M.-H. Cho, Y.-K. Choi, J.-S. Kim, Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich producer gas. Energy 87, 586–593 (2015). https://doi.org/10.1016/j.energy.2015.05.026

    Article  Google Scholar 

  7. R.N. Walters, S.M. Hackett, R.E. Lyon, Heats of combustion of high temperature polymers. Fire Mater. 24, 245–252 (2000). https://doi.org/10.1002/1099-1018(200009/10)24:5<245:AID-FAM744>3.0.CO;2-7

    Article  Google Scholar 

  8. D. Mohan, C.U. Pittman, P.H. Steele, Pyrolysis of wood/ Biomass for bio-oil: a critical review. Energy Fuesl 20, 848–889 (2006). https://doi.org/10.1021/ef0502397

    Article  Google Scholar 

  9. K. Tekin, S. Karagöz, S. Bektaş, A review of hydrothermal biomass processing. Renew. Sustain. Energy Rev. 40, 673–687 (2014). https://doi.org/10.1016/j.rser.2014.07.216

    Article  Google Scholar 

  10. D.C. Elliott, P. Biller, A.B. Ross, A.J. Schmidt, S.B. Jones, Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresour. Technol. 178, 147–156 (2015). https://doi.org/10.1016/j.biortech.2014.09.132

    Article  Google Scholar 

  11. D. Graff, S.C. Albers, A.M. Berklund, G.D. Graff, The rise and fall of innovation in biofuels (n.d)

    Google Scholar 

  12. A.V. Bridgwater, Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg. 38, 68–94 (2012). https://doi.org/10.1016/j.biombioe.2011.01.048

    Article  Google Scholar 

  13. M. Balat, Energy sources, part A: recovery, utilization, and environmental effects mechanisms of thermochemical biomass conversion processes. Part 1: reactions of pyrolysis mechanisms of thermochemical biomass conversion processes. Part 1: reactions of pyrolysis (2017), https://doi.org/10.1080/15567030600817258

  14. A.O. Akinola, Effect of temperature on product yield of pyrolysis of seven selected wood species in south west Nigeria 9359, 176–181 (2016)

    Google Scholar 

  15. A.J. Toft, A comparison of integrated biomass to electricity systems. PhD thesis, Aston University, UK (1996)

    Google Scholar 

  16. I.I. Ahmed, A.K. Gupta, Kinetics of woodchips char gasification with steam and carbon dioxide. Appl. Energy 88, 1613–1619 (2011). https://doi.org/10.1016/j.apenergy.2010.11.007

    Article  Google Scholar 

  17. I.I. Ahmed, A.K. Gupta, Pyrolysis and gasification of food waste: syngas characteristics and char gasification kinetics. Appl. Energy 87(1), 101–108 (2010)

    Article  Google Scholar 

  18. M.S. Hussein, K.G. Burra, R.S. Amano, A.K. Gupta, Temperature and gasifying media effects on chicken manure pyrolysis and gasification. Fuel 202, 36–45 (2017). https://doi.org/10.1016/j.fuel.2017.04.017

    Article  Google Scholar 

  19. K.G. Burra, M.S. Hussein, R.S. Amano, A.K. Gupta, Syngas evolutionary behavior during chicken manure pyrolysis and air gasification. Appl. Energy 181 (2016). https://doi.org/10.1016/j.apenergy.2016.08.095

    Article  Google Scholar 

  20. M.-K. Bahng, C. Mukarakate, D.J. Robichaud, M.R. Nimlos, Current technologies for analysis of biomass thermochemical processing: a review. Anal. Chim. Acta 651, 117–138 (2009). https://doi.org/10.1016/j.aca.2009.08.016

    Article  Google Scholar 

  21. I. Ahmed, A.K. Gupta, Syngas yield during pyrolysis and steam gasification of paper. Appl. Energy 86, 1813–1821 (2009). https://doi.org/10.1016/j.apenergy.2009.01.025

    Article  Google Scholar 

  22. I.I. Ahmed, A.K. Gupta, Kinetics of woodchips char gasification with steam and carbon dioxide. Appl. Energy 88, 1613–1619 (2011). https://doi.org/10.1016/j.apenergy.2010.11.007

    Article  Google Scholar 

  23. I. Ahmed, A.K. Gupta, Characteristics of cardboard and paper gasification with CO2. Appl. Energy 86, 2626–2634 (2009). https://doi.org/10.1016/j.apenergy.2009.04.002

    Article  Google Scholar 

  24. N. Nipattummakul, I. Ahmed, S. Kerdsuwan, A.K. Gupta, High temperature steam gasification of wastewater sludge. Appl. Energy 87, 3729–3734 (2010). https://doi.org/10.1016/j.apenergy.2010.07.001

    Article  Google Scholar 

  25. I.I. Ahmed, N. Nipattummakul, A.K. Gupta, Characteristics of syngas from co-gasification of polyethylene and woodchips. Appl. Energy 88, 165–174 (2011). https://doi.org/10.1016/j.apenergy.2010.07.007

    Article  Google Scholar 

  26. I.I. Ahmed, A.K. Gupta, Pyrolysis and gasification of food waste: syngas characteristics and char gasification kinetics. Appl. Energy 87, 101–108 (2010). https://doi.org/10.1016/j.apenergy.2009.08.032

    Article  Google Scholar 

  27. Z. Abu El-Rub, E.A. Bramer, G. Brem, Review of catalysts for tar elimination in biomass gasification processes. Ind. Eng. Chem. Res. 43, 6911–6919 (2004). https://doi.org/10.1021/ie0498403

    Article  Google Scholar 

  28. L. Devi, K.J. Ptasinski, F.J.J. Janssen, A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenerg. 24, 125–140 (2003). https://doi.org/10.1016/S0961-9534(02)00102-2

    Article  Google Scholar 

  29. P.J. Woolcock, R.C. Brown, A review of cleaning technologies for biomass-derived syngas. Biomass Bioenerg. 52, 54–84 (2013). https://doi.org/10.1016/j.biombioe.2013.02.036

    Article  Google Scholar 

  30. D. Sutton, B. Kelleher, J.R.H. Ross, Review of literature on catalysts for biomass gasification. Fuel Process. Technol. 73, 155–173 (2001). https://doi.org/10.1016/S0378-3820(01)00208-9

    Article  Google Scholar 

  31. D.A. Bulushev, J.R.H. Ross, Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review. Catal. Today 171, 1–13 (2011). https://doi.org/10.1016/j.cattod.2011.02.005

    Article  Google Scholar 

  32. Palma C. Font, Modelling of tar formation and evolution for biomass gasification: a review. Appl. Energy 111, 129–141 (2013). https://doi.org/10.1016/j.apenergy.2013.04.082

    Article  Google Scholar 

  33. T.A. Milne, R.J. Evans, Biomass gasifier “tars”: their nature, formation, and conversion. Golden, CO (1998). https://doi.org/10.2172/3726

  34. J. Søren, U. Birk, Formation, decomposition and cracking of biomass tars in gasification. KgsLyngby Tech Univ Denmark Dep Mech Eng (2005)

    Google Scholar 

  35. P.L. Spath, D.C. Dayton, Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. Natl. Renew. Energy Lab. 1–160 (2003). https://doi.org/10.2172/15006100

  36. S.S. Ail, S. Dasappa, Biomass to liquid transportation fuel via Fischer Tropsch synthesis—technology review and current scenario. Renew. Sustain. Energy Rev. 58, 267–286 (2016). https://doi.org/10.1016/j.rser.2015.12.143

    Article  Google Scholar 

  37. S.S. Toor, L. Rosendahl, A. Rudolf, Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36, 2328–2342 (2011). https://doi.org/10.1016/j.energy.2011.03.013

    Article  Google Scholar 

  38. J.A. Libra, K.S. Ro, C. Kammann, A. Funke, N.D. Berge, Y. Neubauer et al., Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2, 71–106 (2011). https://doi.org/10.4155/bfs.10.81

    Article  Google Scholar 

  39. J. Akhtar, N. Aishah, S. Amin, A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 15, 1615–1624 (2010). https://doi.org/10.1016/j.rser.2010.11.054

    Article  Google Scholar 

  40. M. Sugano, H. Takagi, K. Hirano, K. Mashimo, Hydrothermal liquefaction of plantation biomass with two kinds of wastewater from paper industry. J. Mater. Sci. 43, 2476–2486 (2008). https://doi.org/10.1007/s10853-007-2106-8

    Article  Google Scholar 

  41. A. Dimitriadis, S. Bezergianni, Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: a state of the art review (2016). https://doi.org/10.1016/j.rser.2016.09.120

    Article  Google Scholar 

  42. D.C. Elliott, Historical developments in hydroprocessing bio-oils (n.d.). https://doi.org/10.1021/ef070044u

  43. L. Qiang, L. Wen-Zhi, Z. Xi-Feng, Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers. Manag. 50, 1376–1383 (2009). https://doi.org/10.1016/j.enconman.2009.01.001

    Article  Google Scholar 

  44. M.M. Ahmad, M. Fitrir, R. Nordin, Azizan M. Tazli, Upgrading of bio-oil into high-value hydrocarbons via hydrodeoxygenation. Am. J. Appl. Sci. 7, 746–755 (2010)

    Article  Google Scholar 

  45. A.A. Peterson, F. Vogel, R.P. Lachance, M. Fröling, M.J. Antal, J.W. Tester, Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies (2008). https://doi.org/10.1039/b810100k

    Article  Google Scholar 

  46. T.A. Wierzbicki, I.C. Lee, A.K. Gupta, Recent advances in catalytic oxidation and reformation of jet fuels. Appl. Energy 165, 904–918 (2016). https://doi.org/10.1016/j.apenergy.2015.12.057

    Article  Google Scholar 

  47. Q. Xia, Z. Chen, Y. Shao, X. Gong, H. Wang, X. Liu et al., Direct hydrodeoxygenation of raw woody biomass into liquid alkanes. Nat. Commun. 7, 11162 (2016). https://doi.org/10.1038/ncomms11162

    Article  Google Scholar 

  48. P.P. Peralta-Yahya, M. Ouellet, R. Chan, A. Mukhopadhyay, J.D. Keasling, T.S. Lee, Identification and microbial production of a terpene-based advanced biofuel. Nat. Commun. 2, 483 (2011). https://doi.org/10.1038/ncomms1494

    Article  Google Scholar 

  49. P.M. Mortensen, J.-D. Grunwaldt, P.A. Jensen, K.G. Knudsen, A.D. Jensen, A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A Gen. 407, 1–19 (2011). https://doi.org/10.1016/j.apcata.2011.08.046

    Article  Google Scholar 

  50. J.N. Chheda, G.W. Huber, J.A. Dumesic, Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chemie Int Ed 46, 7164–7183 (2007). https://doi.org/10.1002/anie.200604274

    Article  Google Scholar 

  51. A.S. Goldman, Catalytic alkane metathesis by tandem alkane dehydrogenation-olefin metathesis. Science 312, 257–261 (2006). https://doi.org/10.1126/science.1123787

    Article  Google Scholar 

  52. M.J. Roy, Hydrodeoxygenation of lignin model compounds via thermal catalytic reactions (2012)

    Google Scholar 

  53. Q. Bu, H. Lei, A.H. Zacher, L. Wang, S. Ren, J. Liang et al., A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresour. Technol. 124, 470–477 (2012). https://doi.org/10.1016/j.biortech.2012.08.089

    Article  Google Scholar 

  54. Y. Yoon, R. Rousseau, R.S. Weber, D. Mei, J.A. Lercher, First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase (n.d.). https://doi.org/10.1021/ja501592y

  55. J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009). https://doi.org/10.1038/nchem.121

    Article  Google Scholar 

  56. C.A. Teles, R.C. Rabelo-Neto, J.R. de Lima, L.V. Mattos, D.E. Resasco, F.B. Noronha, The effect of metal type on hydrodeoxygenation of phenol over silica supported catalysts. Catal. Lett. (2016). https://doi.org/10.1007/s10562-016-1815-5

    Article  Google Scholar 

  57. P.M. De Souza, R.C. Rabelo-Neto, L.E.P. Borges, G. Jacobs, B.H. Davis, D.E. Resasco et al., Hydrodeoxygenation of Phenol over Pd catalysts. Effect of support on reaction mechanism and catalyst deactivation (n.d.). https://doi.org/10.1021/acscatal.6b02022

  58. D. Garcia-Pintos, J. Voss, A.D. Jensen, F. Studt, Hydrodeoxygenation of Phenol to Benzene and Cyclohexane on Rh(111) and Rh(211) surfaces: insights from density functional theory (n.d.). https://doi.org/10.1021/acs.jpcc.6b02970

  59. A.M. Verma, N. Kishore, Molecular simulation DFT study on gas-phase hydrodeoxygenation of guaiacol by various reaction schemes DFT study on gas-phase hydrodeoxygenation of guaiacol by various reaction schemes. Mol. Simul. 43, 141–153 (2017). https://doi.org/10.1080/08927022.2016.1239825

    Article  Google Scholar 

  60. W. Yu, J.G. Chen, Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces (2015). https://doi.org/10.1016/j.susc.2015.01.009

  61. B. Kunwar, H.N. Cheng, S.R. Chandrashekaran, B.K. Sharma, Plastics to fuel: a review. Renew. Sustain. Energy Rev. 54, 421–428 (2016). https://doi.org/10.1016/j.rser.2015.10.015

    Article  Google Scholar 

  62. H. Lee, H. Kim, M.J. Yu, C.H. Ko, J.-K. Jeon, J. Jae et al., Catalytic hydrodeoxygenation of bio-oil model compounds over Pt/HY catalyst. Sci. Rep. 6, 28765 (2016). https://doi.org/10.1038/srep28765

    Article  Google Scholar 

  63. E. Furimsky, Catalytic hydrodeoxygenation. Appl. Catal. A Gen. 199, 147–190 (2000)

    Article  Google Scholar 

  64. Q. Zhang, J. Chang, T. Wang, Y. Xu, Review of biomass pyrolysis oil properties and upgrading research. Energy Convers. Manag. 48, 87–92 (2007). https://doi.org/10.1016/j.enconman.2006.05.010

    Article  Google Scholar 

  65. Y. Zhu, M.J. Biddy, S.B. Jones, D.C. Elliott, A.J. Schmidt, Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading. Appl. Energy 129, 384–394 (2014). https://doi.org/10.1016/j.apenergy.2014.03.053

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burra, K.G., Gupta, A.K. (2018). Thermochemical Reforming of Wastes to Renewable Fuels. In: Runchal, A., Gupta, A., Kushari, A., De, A., Aggarwal, S. (eds) Energy for Propulsion . Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7473-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7473-8_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7472-1

  • Online ISBN: 978-981-10-7473-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics