Skip to main content

The Functional Interplay Between Pro-oncogenic RUNX2 and Hypoxia-Inducible Factor-1α (HIF-1α) During Hypoxia-Mediated Tumor Progression

  • Chapter
  • First Online:
Regulation of Signal Transduction in Human Cell Research

Abstract

Solid tumor tissues often have functional and phenotypical heterogeneities, arising at least in part from the local hypoxic tumor microenvironment (generally O2 concentration is less than 2%). The elevated level of hypoxia is tightly associated with genetic instability, tumor progression, drug resistance, and/or poor clinical outcome after treatment, indicating that hypoxia exerts a strong selection pressure for the survival of cancer stem cells (CSCs) within tumors and also permits their maintenance. Thus, it has become urgent to precisely clarify the molecular basis of how hypoxia could contribute to the acquisition and/or maintenance of the aggressive phenotypes of this deadly disease. Meanwhile, cells keep genomic integrity to avoid genetic instability-mediated tumorigenesis through the proper stress response under normoxia. Upon hypoxia, hypoxia-inducible factor-1α (HIF-1α) which has an O2-sensing ability accumulates and then facilitates tumor development through an induction of vascular endothelial growth factor (VEGF)-dependent angiogenesis. Therefore, the hypoxic HIF-1α/VEGF regulatory axis plays a vital role during the malignant tumor progression. Intriguingly, pro-oncogenic runt-related transcription factor 2 (RUNX2) has an ability to stimulate HIF-1α-mediated induction of VEGF. Recently, we have found for the first time that RUNX2 contributes to the acquisition of drug-resistant phenotype of malignant tumor cells. In this review, we focus on the functional interplay between HIF-1α/VEGF and RUNX2 within the hypoxic tumor microenvironment. Finally, we would like to discuss the potential therapeutic strategy targeting this tumor hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biddlestone J, Bandarra D, Rocha S. The role of hypoxia in inflammatory disease. Int J Mol Med. 2015;35:859–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Span PN, Bussink J. Biology of hypoxia. Sem Nucl Med. 2015;45:101–9.

    Article  Google Scholar 

  3. Kaelin WG Jr. Treatment of kidney cancer: insights provided by the VHL tumor-suppressor protein. Cancer. 2009;(115):2262–72.

    Google Scholar 

  4. Forsythe JA, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16:4604–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Keith B, Johnson RS, Simon MC. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2012;12:9–22.

    Article  CAS  Google Scholar 

  6. Claffey KP, Robinson GS. Regulation of VEGF/VPF expression in tumor cells: consequences for tumor growth and metastasis. Cancer Metastasis Rev. 1996;15:165−176.

    Article  Google Scholar 

  7. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669−676.

    Google Scholar 

  8. Hu K, et al. Hypoxia-inducible factor 1 upregulation of both VEGF and ANGPTL4 is required to promote the angiogenic phenotype in uveal melanoma. Oncotarget. 2016;7(7):7816–28. 10.18632/oncotarget.6868.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Price DJ, et al. Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. Cell Growth Differ. 2001;12:129–−135.

    CAS  PubMed  Google Scholar 

  10. Grothey A, Galanis E. Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat Rev Clin Oncol. 2009;6:507−518.

    Google Scholar 

  11. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002;2:727–39.

    Article  CAS  PubMed  Google Scholar 

  12. Ulivi P, Marisi G, Passardi A. Relationship between hypoxia and response to antiangiogenic therapy in metastatic colorectal cancer. Oncotarget. 2016;7:46678–91. 10.18632/oncotarget.8712.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shivdasani RA. MicroRNAs: regulators of gene expression and cell differentiation. Blood. 2006;108:3646–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao Y, et al. miRNA-directed regulation of VEGF in tilapia under hypoxia condition. Biochem Biophys Res Commun. 2014;454(1):183–8.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng S, et al. Global microRNA depletion suppresses tumor angiogenesis. Genes Dev. 2014;28:1054–67.

    Article  Google Scholar 

  16. Rupaimoole R, et al. Hypoxia-upregulated microRNA-630 targets Dicer, leading to increased tumor progression. Oncogene. 2016;35(33):4312–20. https://doi.org/10.1038/onc.2015.492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Komori T, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755–64.

    Article  CAS  PubMed  Google Scholar 

  18. Otto F, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89:765–71.

    Article  CAS  PubMed  Google Scholar 

  19. Karsenty G. The genetic transformation of bone biology. Genes Dev. 1999;13:3037–51.

    Article  CAS  PubMed  Google Scholar 

  20. Kayed H. Regulation and functional role of the Runt-related transcription factor-2 in pancreatic cancer. Br J Cancer. 2007;97(8):1106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pratap J, et al. Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Re. 2006;25(4):589–600.

    Article  CAS  Google Scholar 

  22. Wang ZQ, et al. Inhibition of RUNX2 transcriptional activity blocks the proliferation, migration and invasion of epithelial ovarian carcinoma cells. PLoS One. 2013;8(10):e74384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mendoza-Villanueva D, et al. The Runx transcriptional co-activator, CBFbeta, is essential for invasion of breast cancer cells. Mol Cancer. 2010;9:171.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pratap J, et al. The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol. 2005;25(19):8581–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ozaki T, et al. Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage. Cell Death Dis. 2013;4:e610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sugimoto K, et al. Silencing of RUNX2 enhances gemcitabine sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the stimulation of TAp63-mediated cell death. Cell Death Dis. 2015;6:e1914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carlson DJ, Yenice KM, Orton CG. Tumor hypoxia is an important mechanism of radioresistance in hypofractionated radiotherapy and must be considered in the treatment planning process. Med Phys. 2011;38(12):6347–50.

    Article  PubMed  Google Scholar 

  28. Graeber TG, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature. 1996;379:88–91.

    Article  CAS  PubMed  Google Scholar 

  29. Subarsky P, Hill RP. The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis. 2003;20:237–50.

    Article  CAS  PubMed  Google Scholar 

  30. Wartenberg M, et al. Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species. FASEB J. 2003;17:503–5.

    Article  CAS  PubMed  Google Scholar 

  31. McKeown SR. Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br J Radiol. 2014;87:20130676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nordsmark M, Overgaard J. Tumor hypoxia is independent of hemoglobin and prognostic for loco-regional tumor control after primary radiotherapy in advanced head and neck cancer. Acta Oncol. 2004;43(4):396–403.

    Article  PubMed  Google Scholar 

  33. McDougall SR, Anderson ARA, Chaplain MAJ. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol. 2006;7:564–89.

    Article  Google Scholar 

  34. Nishida N, et al. Angiogenesis in cancer. Vasc Health Risk Manag. 2006;2:213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8:579−591.

    Article  Google Scholar 

  36. Otrock ZK, Makarem JA, Shamseddine AI. Vascular endothelial growth factor family of ligands and receptors: review. Blood Cells Mol Dis. 2007;38(3):258–68.

    Article  CAS  PubMed  Google Scholar 

  37. Hirayama N, et al. Pleural effusion VEGF levels as a prognostic factor of malignant pleural mesothelioma. Respir Med. 2011;105:137–42.

    Article  PubMed  Google Scholar 

  38. Hsu IL, et al. Angiogenetic biomarkers in non-small cell lung cancer with malignant pleural effusion: Correlations with patient survival and pleural effusion control. Lung Cancer. 2009;65:371–6.

    Article  PubMed  Google Scholar 

  39. Blagosklonny MV. Antiangiogenic therapy and tumor progression. Cancer Cell. 2004;5:13–7.

    Article  CAS  PubMed  Google Scholar 

  40. Bottsford-Miller JN, Coleman RL, Sood AK. Resistance and escape from antiangiogenesis therapy: clinical implications and future strategies. J Clin Oncol. 2012;30:4026–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jayson GC, Hicklin DJ, Ellis LM. Antiangiogenic therapy-evolving view based on clinical trial results. Nat Rev Clin Oncol. 2012;9:297–303.

    Article  CAS  PubMed  Google Scholar 

  42. Al-Hajj M, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ricci-Vitiani L, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.

    Article  CAS  PubMed  Google Scholar 

  44. Singh SK, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.

    CAS  PubMed  Google Scholar 

  45. Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717–28.

    Article  CAS  PubMed  Google Scholar 

  46. Bos R, et al. Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J Natl Cancer Inst. 2001;93(4):309–14.

    Article  CAS  PubMed  Google Scholar 

  47. Soeda et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α. Oncogene. 2009;28:3949–59.

    Article  Google Scholar 

  48. Jung P, et al. Isolation and in vitro expansion of human colonic stem cells. Nat Med. 2011;17:1225–7.

    Article  CAS  PubMed  Google Scholar 

  49. Heddleston JM, et al. Hypoxia inducible factors in cancer stem cells. Br J Cancer. 2010;102(5):789–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dong et al. The Wnt/β-catenin signaling/Id2 cascade mediates the effects of hypoxia on the hierarchy of colorectal-cancer stem cells. Sci Rep. 2016;6:22966.

    Article  Google Scholar 

  51. Benezra R, Rafii S, Lyden D. The Id proteins and angiogenesis. Oncogene. 2001;20(58):8334–41.

    Article  CAS  PubMed  Google Scholar 

  52. Kleeff J, et al. The helix-loop-helix protein Id2 is overexpressed in human pancreatic cancer. Cancer Res. 1998;58:3769–72.

    CAS  PubMed  Google Scholar 

  53. Drakaki A, Iliopoulos D. MicroRNA gene networks in oncogenesis. Curr Genomics. 2009;10:35–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xue G, et al. c-Myc-mediated repression of miR-15-16 in hypoxia is induced by increased HIF-2α and promotes tumor angiogenesis and metastasis by upregulating FGF2. Oncogene. 2015;34(11):1393–406.

    Article  CAS  PubMed  Google Scholar 

  55. Ge X, et al. MicroRNA-421 regulated by HIF-1α promotes metastasis, inhibits apoptosis, and induces cisplatin resistance by targeting E-cadherin and caspase-3 in gastric cancer. Oncotarget. 2016;7(17):24466–82. 10.18632/oncotarget.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Devlin C, et al. miR-210: More than a silent player in hypoxia. IUBMB Life. 2011;63:94–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Seok JK, et al. MicroRNA-382 induced by HIF-1alpha is an angiogenic miR targeting the tumor suppressor phosphatase and tensin homolog. Nucleic Acids Res. 2014;42:8062–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Boregowda RK, et al. RUNX2 is overexpressed in melanoma cells and mediates their migration and invasion. Cancer Lett. 2014;348(1–2):61–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li H, et al. Clinical significance of RUNX2 expression in patients with nonsmall cell lung cancer: a 5-year follow-up study. Tumour Biol. 2013;34(3):1807–12.

    Article  PubMed  Google Scholar 

  60. Baniwal SK, et al. Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis. Mol Cancer. 2010;9:258.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sase T, et al. Runt-related transcription factor 2 in human colon carcinoma: a potent prognostic factor associated with estrogen receptor. Int J Cancer. 2012;131:2284–93.

    Article  CAS  PubMed  Google Scholar 

  62. Cohen-Solal KA, Boregowda RK, Lasfar A. RUNX2 and the PI3K/AKT axis reciprocal activation as a driving force for tumor progression. Mol Cancer. 2015;14:137.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zelzer E, et al. Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mech Dev. 2001;106:97–106.

    Article  CAS  PubMed  Google Scholar 

  64. Lee SH, et al. Runx2 protein stabilizes hypoxia-inducible factor-1α through competition with von Hippel-Lindau protein (pVHL) and stimulates angiogenesis in growth plate hypertrophic chondrocytes. J Biol Chem. 2012;287(18):14760–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kwon TG, et al. Physical and functional interactions between Runx2 and HIF-1α induce vascular endothelial growth factor gene expression. J Cell Biochem. 2011;112(12):3582–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Browne G, et al. Bicalutamide-induced hypoxia potentiates RUNX2-mediated Bcl-2 expression resulting in apoptosis resistance. Br J Cancer. 2012;107(10):1714–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Willett CG, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10:145–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li MY, et al. DW10075, a novel selective and small-molecule inhibitor of VEGFR, exhibits antitumor activities both in vitro and in vivo. Acta Pharmacol Sin. 2016;37(3):398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang Y, et al. The DEK oncogene activates VEGF expression and promotes tumor angiogenesis and growth in HIF-1α-dependent and -independent manners. Oncotarget. 2016;7(17):23740–56. 10.18632/oncotarget.8060.

    PubMed  PubMed Central  Google Scholar 

  70. Taipaleenmäki H, et al. Targeting of Runx2 by miRNA-135 and miRNA-203 impairs progression of breast cancer and metastatic bone disease. Cancer Res. 2015;75(7):1433–44.

    Article  PubMed  PubMed Central  Google Scholar 

  71. van der Deen M. MicroRNA-34c inversely couples the biological functions of the runt-related transcription factor RUNX2 and the tumor suppressor p53 in osteosarcoma. J Biol Chem. 2013;288(29):21307–19.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zorde Khvalevsky E, et al. Mutant KRAS is a druggable target for pancreatic cancer. Proc Natl Acad Sci U S A. 2013;100:20723–8.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Hiroki Nagase for his helpful discussions.

Conflicts of Interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshinori Ozaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ozaki, T., Nakamura, M., Ogata, T., Sang, M., Shimozato, O. (2018). The Functional Interplay Between Pro-oncogenic RUNX2 and Hypoxia-Inducible Factor-1α (HIF-1α) During Hypoxia-Mediated Tumor Progression. In: Shinomiya, N., Kataoka, H., Xie, Q. (eds) Regulation of Signal Transduction in Human Cell Research. Current Human Cell Research and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-7296-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7296-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7295-6

  • Online ISBN: 978-981-10-7296-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics