Skip to main content

Population Control in Evolutionary Algorithms: Review and Comparison

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 791))

Abstract

Population size in evolutionary algorithms (EAs) is critical for their performance. In this paper, we first give a comprehensive review of existing population control methods. Then, a few representative methods are selected and empirically compared on a range of well-known benchmark functions to show their pros and cons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Jong, K.: Parameter setting in EAs: a 30 year perspective. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms. SCI, vol. 54, pp. 1–18. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69432-8_1

    Chapter  Google Scholar 

  2. Costa, J.C., Tavares, R., Rosa, A.: An experimental study on dynamic random variation of population size. In: 1999 IEEE International Conference on Systems, Man, and Cybernetics, IEEE SMC 1999 Conference Proceedings, vol. 1, pp. 607–612. IEEE (1999)

    Google Scholar 

  3. Eiben, Á.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

    Article  Google Scholar 

  4. Eiben, A.E., Marchiori, E., Valkó, V.A.: Evolutionary algorithms with on-the-fly population size adjustment. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 41–50. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_5

    Chapter  Google Scholar 

  5. Hu, T., Banzhaf, W.: The role of population size in rate of evolution in genetic programming. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 85–96. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01181-8_8

    Chapter  Google Scholar 

  6. Romero, G., Mora, A.M., Fernandes, C.: Studying the effect of population size in distributed evolutionary algorithms on heterogeneous clusters. Appl. Soft. Comput. 38(C), 530–547 (2016)

    Google Scholar 

  7. Goldberg, D.E.: Sizing populations for serial and parallel genetic algorithms. In: Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 70–79 (1989)

    Google Scholar 

  8. Schaffer, J.: A study of control parameters affecting online performance of genetic algorithms for function optimization, San Meteo, California (1989)

    Google Scholar 

  9. Smith, R.E., Smuda, E.: Adaptively resizing populations: algorithm, analysis, and first results. Complex Syst. 9, 47–72 (1995)

    Google Scholar 

  10. Weise, T., Wu, Y., Chiong, R.J.: Global versus local search: the impact of population sizes on evolutionary algorithm performance. J. Global. Optim. 66(3), 511–534 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  11. Arabas, J., Michalewicz, Z., Mulawka, J.: GAVaPS-a genetic algorithm with varying population size. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, pp. 73–78. IEEE (1994)

    Google Scholar 

  12. Fernández, F., Tomassini, M., Vanneschi, L.: An empirical study of multipopulation genetic programming. Genetic Program. Evol. Mach. 4(1), 21–51 (2003)

    Article  MATH  Google Scholar 

  13. Brest, J., Maučec, M.S.: Population size reduction for the differential evolution algorithm. Appl. Intell. 29(3), 228–247 (2008)

    Article  Google Scholar 

  14. Ahrari, A., Shariat-Panahi, M.: An improved evolution strategy with adaptive population size. Optimization 64(12), 2567–2586 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  15. Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2015)

    Article  Google Scholar 

  16. Piotrowski, A.P.: Review of differential evolution population size. Swarm Evol. Comput. 32, 1–24 (2017)

    Article  Google Scholar 

  17. Holdener, E.A.: The art of parameterless evolutionary algorithms. Ph.D. thesis, Missouri University of Science and Technology (2008)

    Google Scholar 

  18. Goldberg, D.E., Deb, K., Clark, J.H.: Genetic algorithms, noise, and the sizing of populations. Urbana 51, 61801 (1991)

    Google Scholar 

  19. Reeves, C.R.: Using genetic algorithms with small populations. In: ICGA, vol. 590, p. 92 (1993)

    Google Scholar 

  20. Goldberg, D.E., Sastry, K., Latoza, T.: On the supply of building blocks. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, pp. 336–342. Morgan Kaufmann Publishers Inc. (2001)

    Google Scholar 

  21. De Jong, K.A.: Analysis of the behavior of a class of genetic adaptive systems (1975)

    Google Scholar 

  22. Harik, G., Cantú-Paz, E., Goldberg, D.E., Miller, B.L.: The Gambler’s ruin problem, genetic algorithms, and the sizing of populations. Evol. Comput. 7(3), 231–253 (1999)

    Article  Google Scholar 

  23. Fernandez, F., Vanneschi, L., Tomassini, M.: The effect of plagues in genetic programming: a study of variable-size populations. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 317–326. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36599-0_29

    Chapter  Google Scholar 

  24. Fernandez, F., Tomassini, M., Vanneschi, L.: Saving computational effort in genetic programming by means of plagues. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 3, pp. 2042–2049. IEEE (2003)

    Google Scholar 

  25. de Vega, F.F., Cantú-Paz, E., López, J.I., Manzano, T.: Saving resources with plagues in genetic algorithms. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 272–281. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_28

    Chapter  Google Scholar 

  26. Brest, J., Zamuda, A., Fister, I., Maučec, M.S.: Large scale global optimization using self-adaptive differential evolution algorithm. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)

    Google Scholar 

  27. Brest, J., Maučec, M.S.: Self-adaptive differential evolution algorithm using population size reduction and three strategies. Soft Comput. 15(11), 2157–2174 (2011)

    Article  Google Scholar 

  28. Zamuda, A., Brest, J., Mezura-Montes, E.: Structured population size reduction differential evolution with multiple mutation strategies on CEC 2013 real parameter optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1925–1931. IEEE (2013)

    Google Scholar 

  29. Yang, M., Cai, Z., Guan, J., Gong, W.: Differential evolution with improved population reduction. In: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 143–144. ACM (2011)

    Google Scholar 

  30. Ali, M.Z., Awad, N.H., Suganthan, P.N., Reynolds, R.G.: An adaptive multipopulation differential evolution with dynamic population reduction. IEEE Trans. Cybern. 47(9), 2768–2779 (2017)

    Article  Google Scholar 

  31. Iacca, G., Mallipeddi, R., Mininno, E., Neri, F.: Super-fit and population size reduction in compact differential evolution. In: Memetic Computing, pp. 1–8 (2011)

    Google Scholar 

  32. Zamuda, A., Brest, J.: Population reduction differential evolution with multiple mutation strategies in real world industry challenges. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC/SIDE -2012. LNCS, vol. 7269, pp. 154–161. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29353-5_18

    Chapter  Google Scholar 

  33. Brest, J., Zamuda, A., Fister, I., Maučec, M.S., et al.: Self-adaptive differential evolution algorithm with a small and varying population size. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)

    Google Scholar 

  34. Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artif. Intell. Rev. 33(1–2), 61–106 (2010)

    Article  Google Scholar 

  35. Koumousis, V.K., Katsaras, C.P.: A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans. Evol. Comput. 10(1), 19–28 (2006)

    Article  Google Scholar 

  36. Koumousis, V., Dimou, C.: The effect of oscillating population size on the performance of genetic algorithms. In: Proceedings of the 4th GRACM Congress on Computational Mechanics (2002)

    Google Scholar 

  37. Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665. IEEE (2014)

    Google Scholar 

  38. Yuan, X., Zhang, B., Wang, P., Liang, J., Yuan, Y., Huang, Y., Lei, X.: Multi-objective optimal power flow based on improved strength pareto evolutionary algorithm. Energy 122, 70–82 (2017)

    Article  Google Scholar 

  39. Polakova, R., Tvrdik, J., Bujok, P.: Evaluating the performance of l-shade with competing strategies on CEC 2014 single parameter-operator test suite. In: IEEE Congress on Evolutionary Computation, pp. 1181–1187 (2016)

    Google Scholar 

  40. Viktorin, A., Pluhacek, M., Senkerik, R.: Network based linear population size reduction in shade. In: International Conference on Intelligent Networking and Collaborative Systems, pp. 86–93 (2016)

    Google Scholar 

  41. Guo, S.M., Tsai, S.H., Yang, C.C., Hsu, P.H.: A self-optimization approach for l-shade incorporated with eigenvector-based crossover and successful-parent-selecting framework on CEC 2015 benchmark set. In: Evolutionary Computation, pp. 1003–1010 (2015)

    Google Scholar 

  42. Zheng, Y.J., Zhang, B.: A simplified water wave optimization algorithm. In: Evolutionary Computation, pp. 807–813 (2015)

    Google Scholar 

  43. Montiel, O., Castillo, O., Melin, P., Sepúlveda, R.: Intelligent control of dynamic population size for evolutionary algorithms. In: IC-AI, pp. 551–557 (2006)

    Google Scholar 

  44. Wang, H., Rahnamayan, S., Wu, Z.: Adaptive differential evolution with variable population size for solving high-dimensional problems. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 2626–2632. IEEE (2011)

    Google Scholar 

  45. Wang, X., Zhao, S., Jin, Y., Zhang, L.: Differential evolution algorithm based on self-adaptive adjustment mechanism. In: 2013 25th Chinese Control and Decision Conference (CCDC), pp. 577–581. IEEE (2013)

    Google Scholar 

  46. Elsayed, S.M., Sarker, R.A.: Differential evolution with automatic population injection scheme for constrained problems. In: 2013 IEEE Symposium on Differential Evolution (SDE), pp. 112–118. IEEE (2013)

    Google Scholar 

  47. Zhang, C., Chen, J., Xin, B., Cai, T., Chen, C.: Differential evolution with adaptive population size combining lifetime and extinction mechanisms. In: 2011 8th Asian Control Conference (ASCC), pp. 1221–1226. IEEE (2011)

    Google Scholar 

  48. Zhao, S., Wang, X., Chen, L., Zhu, W.: A novel self-adaptive differential evolution algorithm with population size adjustment scheme. Arab. J. Sci. Eng. 39(8), 6149–6174 (2014)

    Article  Google Scholar 

  49. Schlierkamp-Voosen, D., Muhlenbein, H.: Adaptation of population sizes by competing subpopulations. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 330–335. IEEE (1996)

    Google Scholar 

  50. Smorodkina, E., Tauritz, D.: Greedy population sizing for evolutionary algorithms. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 2181–2187. IEEE (2007)

    Google Scholar 

  51. Hinterding, R., Michalewicz, Z., Peachey, T.C.: Self-adaptive genetic algorithm for numeric functions. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 420–429. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61723-X_1006

    Chapter  Google Scholar 

  52. Harik, G.R., Lobo, F.G.: A parameter-less genetic algorithm. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, vol. 1, pp. 258–265. Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  53. Zhan, Z.H., Zhang, J.: Co-evolutionary differential evolution with dynamic population size and adaptive migration strategy. In: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 211–212. ACM (2011)

    Google Scholar 

  54. Fernándes, C., Rosa, A.C., Rosa, A.C.: NiGaVaPS - a outbreeding in genetic algorithms. In: ACM Symposium on Applied Computing, pp. 477–482 (2000)

    Google Scholar 

  55. Fernándes, C., Rosa, A.: Self-regulated population size in evolutionary algorithms. In: International Conference on Parallel Problem Solving from Nature, pp. 920–929 (2006)

    Google Scholar 

  56. Fernándes, C., Rosa, A., Pais, A.R., Norte, T.: A study on non-random mating and varying population size in genetic algorithms using a royal road function. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 60–66 (2001)

    Google Scholar 

  57. Lee, H.S., Lee, J.H., Kim, E.T.: Optimal classifier ensemble design for vehicle detection using GAVaPS. J. Inst. Control Robot. Syst. 16(1), 96–100 (2010)

    Article  Google Scholar 

  58. Bäck, T., Eiben, A.E., Van Der Vaart, N.A.L.: An empirical study on gas “Without Parameters”. In: International Conference on Parallel Problem Solving from Nature, pp. 315–324 (2000)

    Google Scholar 

  59. Iorio, A., Li, X.: Parameter control within a co-operative co-evolutionary genetic algorithm. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 247–256. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45712-7_24

    Google Scholar 

  60. Vellev, S.: An adaptive genetic algorithm with dynamic population size for optimizing join queries. Adv. Res. Artif. Int. 82, 82–88 (2008)

    Google Scholar 

  61. Cook, J.E., Tauritz, D.R.: An exploration into dynamic population sizing. In: Conference on Genetic and Evolutionary Computation, pp. 807–814 (2010)

    Google Scholar 

  62. Krishnakumar, K.: Micro-genetic algorithms for stationary and non-stationary function optimization. In: 1989 Symposium on Visual Communications, Image Processing, and Intelligent Robotics Systems, pp. 289–296. International Society for Optics and Photonics (1990)

    Google Scholar 

  63. Coello, C.A., Pulido, G.T.: Multiobjective optimization using a micro-genetic algorithm. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, pp. 274–282. Morgan Kaufmann Publishers Inc. (2001)

    Google Scholar 

  64. Xu, Y., Liu, G.: Detection of flaws in composites from scattered elastic-wave field using an improved \(\mu \)GA and a local optimizer. Comput. Methods Appl. Mech. 191(36), 3929–3946 (2002)

    Article  MATH  Google Scholar 

  65. Ryoo, J., Hajela, P.: Handling variable string lengths in GA-based structural topology optimization. Struct. Multidiscip. Optim. 26(5), 318–325 (2004)

    Article  Google Scholar 

  66. Khor, E.F., Tan, K.C., Wang, M.L., Lee, T.H.: Evolutionary algorithm with dynamic population size for multi-objective optimization. In: Conference of the IEEE Industrial Electronics Society, IECON 2000, vol. 4, pp. 2768–2773 (2000)

    Google Scholar 

  67. Tan, K.C., Lee, T.H., Khor, E.F.: Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. IEEE Trans. Evol. Comput. 5(6), 565–588 (2001)

    Article  Google Scholar 

  68. Liang, Y., Leung, K.S.: Genetic algorithm with adaptive elitist-population strategies for multimodal function optimization. Appl. Soft. Comput. 11(2), 2017–2034 (2011)

    Article  Google Scholar 

  69. Yang, M., Cai, Z., Guan, J., Guan, J.: An improved adaptive differential evolution algorithm with population adaptation. In: Conference on Genetic and Evolutionary Computation, pp. 145–152 (2013)

    Google Scholar 

  70. Ding, M., Chen, H., Lin, N., Jing, S., Liu, F., Liang, X., Liu, W.: Dynamic population artificial bee colony algorithm for multi-objective optimal power flow. Saudi. J. Biol. Sci. 24(3), 703–710 (2017)

    Article  Google Scholar 

  71. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1769–1776 (2005)

    Google Scholar 

  72. Shi, E.C., Leung, F.H.F., Law, B.N.F.: Differential evolution with adaptive population size. In: International Conference on Digital Signal Processing, pp. 876–881 (2014)

    Google Scholar 

  73. Smith, R.E., Smuda, E.: Adaptively resizing populations: algorithm, analysis, and first results. Complex Syst. (1993)

    Google Scholar 

  74. Tirronen, V., Neri, F.: Differential evolution with fitness diversity self-adaptation. In: Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation. SCI, vol. 193, pp. 199–234. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00267-0_7

    Chapter  Google Scholar 

  75. Wagner, N., Michalewicz, Z.: Genetic Programming with Efficient Population Control for Financial Time Series Prediction (2001)

    Google Scholar 

  76. Wagner, N., Michalewicz, Z.: Parameter Adaptation for GP Forecasting Applications (2007)

    Google Scholar 

  77. Wagner, N., Michalewicz, Z., Khouja, M., Mcgregor, R.R.: Time series forecasting for dynamic environments: the DyFor genetic program model. IEEE Trans. Evol. Comput. 11(4), 433–452 (2007)

    Article  Google Scholar 

  78. Teo, J.: Exploring dynamic self-adaptive populations in differential evolution. Soft Comput. 10(8), 673–686 (2006)

    Article  Google Scholar 

  79. Eiben, A.E., Schut, M.C., Wilde, A.R.D.: Is self-adaptation of selection pressure and population size possible?: a case study. In: International Conference on Parallel Problem Solving from Nature, pp. 900–909 (2006)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61573316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Sheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guan, Y., Yang, L., Sheng, W. (2017). Population Control in Evolutionary Algorithms: Review and Comparison. In: He, C., Mo, H., Pan, L., Zhao, Y. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2017. Communications in Computer and Information Science, vol 791. Springer, Singapore. https://doi.org/10.1007/978-981-10-7179-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7179-9_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7178-2

  • Online ISBN: 978-981-10-7179-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics