Skip to main content

Distributed Brillouin Sensing: Time-Domain Techniques

  • Reference work entry
  • First Online:
Handbook of Optical Fibers

Abstract

Distributed optical fiber sensors based on spontaneous and stimulated Brillouin scattering have been a subject of intense research and industrial developments for almost 30 years. Combining interrogation methods based on optical time-domain reflectometry and the dependence of Brillouin scattering on environmental variables, such as temperature and strain, high-performance distributed sensing techniques have been developed over the last decades for a wide range of industrial applications. This chapter presents a comprehensive description of the fundamentals of time-domain techniques exploited for distributed Brillouin optical fiber sensing. This includes the basic principles and limitations of different classical configurations. Theoretical descriptions of sophisticated techniques to overcome the fundamental limitations of classical Brillouin time-domain schemes are also presented. In this way, the most-common advanced approaches to reach high spatial resolution, dynamic, and long-range distributed Brillouin sensing are thoroughly described from theoretical and practical points of view. The material presented in this chapter is intended to serve as a guideline to design and implement state-of-the-art distributed Brillouin optical fiber sensors exploiting time-domain interrogation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic, San Diego, 2007)

    Google Scholar 

  • M.N. Alahbabi, Y.T. Cho, T.P. Newson, P.C. Wait, A.H. Hartog, Influence of modulation instability on distributed optical fiber sensors based on spontaneous Brillouin scattering. J. Opt. Soc. Am. B 21(6), 1156–1160 (2004)

    Article  CAS  Google Scholar 

  • M. Alem, M.A. Soto, L. Thévenaz, Analytical model and experimental verification of the critical power for modulation instability in optical fibers. Opt. Express 23(23), 29514–29532 (2015)

    Article  Google Scholar 

  • M. Alem, M. A. Soto, M. Tur, L. Thévenaz, Analytical expression and experimental validation of the Brillouin gain spectral broadening at any sensing spatial resolution, in Proc. SPIE 10323, 25th International Conference on Optical Fiber Sensors, 103239J (2017)

    Google Scholar 

  • X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, M. Gonzalez-Herraez, Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km. Opt. Express 20, 12147–12154 (2012)

    Article  CAS  Google Scholar 

  • X. Angulo-Vinuesa, D. Bacquet, S. Martin-Lopez, P. Corredera, P. Szriftgiser, M. Gonzalez-Herraez, Relative intensity noise transfer reduction in Raman-assisted BOTDA systems. IEEE Photon. Technol. Lett. 26(3), 271–274 (2014)

    Article  Google Scholar 

  • K.-I. Aoyama, K. Nakagawa, T. Itoh, Optical time domain reflectometry in a single-mode fiber. IEEE J. Quantum Electron. QE-17(6), 862–868 (1981)

    Article  Google Scholar 

  • R. Bernini, A. Minardo, L. Zeni, Dynamic strain measurement in optical fibers by stimulated Brillouin scattering. Opt. Lett. 34, 2613–2615 (2009)

    Article  Google Scholar 

  • J.-C. Beugnot, M. Tur, S.F. Mafang, L. Thévenaz, Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing. Opt. Express 19(8), 7381–7397 (2011)

    Article  Google Scholar 

  • R.W. Boyd, Nonlinear Optical, 2nd edn. (Academic, San Diego, 2003)

    Google Scholar 

  • P. Chaube, B.G. Colpitts, D. Jagannathan, A.W. Brown, Distributed fiber-optic sensor for dynamic strain measurement. IEEE Sensors J. 8(7), 1067–1072 (2008)

    Article  Google Scholar 

  • Y.T. Cho, M. Alahbabi, M.J. Gunning, T.P. Newson, 50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification. Opt. Lett. 28, 1651–1653 (2003)

    Article  CAS  Google Scholar 

  • H.Z. Cummins, R.W. Gammon, Rayleigh and Brillouin scattering in liquids: the Landau—Placzek ratio. J. Chem. Phys. 44(7), 2785–2796 (1966)

    Article  CAS  Google Scholar 

  • A. Dominguez-Lopez, A. Lopez-Gil, S. Martín-López, M. Gonzalez-Herraez, Strong cancellation of RIN transfer in a Raman-assisted BOTDA using balanced detection. IEEE Phot. Technol. Lett. 26(18), 1817–1820 (2014)

    Article  Google Scholar 

  • A. Dominguez-Lopez, Z. Yang, M.A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thévenaz, M. Gonzalez-Herraez, Novel scanning method for distortion-free BOTDA measurements. Opt. Express 24(10), 10188 (2016)

    Article  CAS  Google Scholar 

  • Y. Dong, L. Chen, X. Bao, Time-division multiplexing-based BOTDA over 100km sensing length. Opt. Lett. 36, 277–279 (2011)

    Article  Google Scholar 

  • Y. Dong, L. Chen, X. Bao, Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs. J. Lightwave Tech. 30(8), 1161–1167 (2012)

    Article  CAS  Google Scholar 

  • M. Farahani, M. Wylie, E. Castillo-Guerra, B. Colpitts, Reduction in the number of averages required in BOTDA sensors using wavelet denoising techniques. J. Lightwave Technol. 30, 1134–1142 (2012)

    Article  Google Scholar 

  • A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution, in OSA Technical Digest Series vol. 16, 12th International Conference on Optical Fiber Sensors. (1997), p. 324–327

    Google Scholar 

  • A. Fellay, L. Thévenaz, M. Facchini, P. Robert, Limitation of Brillouin time-domain analysis by Raman scattering, in Proceeding of the 5th Optical Fibre Measurement Conference. (1999), p. 110–113

    Google Scholar 

  • S. M. Foaleng, L. Thévenaz, Impact of Raman scattering and modulation instability on the performances of Brillouin sensors, in Proc. SPIE 7753, 21st International Conference on Optical Fiber Sensors, 77539V (2011)

    Google Scholar 

  • S.M. Foaleng, M. Tur, J.-C. Beugnot, L. Thévenaz, High spatial and spectral resolution long-range sensing using Brillouin echoes. J. Lightwave Technol. 28(20), 2993–3003 (2010)

    Article  Google Scholar 

  • S.M. Foaleng, F. Rodríguez-Barrios, S. Martin-Lopez, M. González-Herráez, L. Thévenaz, Detrimental effect of self-phase modulation on the performance of Brillouin distributed fiber sensors. Opt. Lett. 36, 97–99 (2011)

    Article  Google Scholar 

  • E. Geinitz, S. Jetschke, U. Röpke, S. Schröter, R. Willsch, H. Bartelt, The influence of pulse amplification on distributed fibre-optic Brillouin sensing and a method to compensate for systematic errors. Meas. Sci. Technol. 10(2), 112–116 (1999)

    Article  CAS  Google Scholar 

  • F. Gyger, E. Rochat, S. Chin, M. Niklès, L. Thévenaz, Extending the sensing range of Brillouin optical time-domain analysis up to 325 km combining four optical repeaters, in Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 91576Q (2014)

    Google Scholar 

  • T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, Development of a distributed sensing technique using Brillouin scattering. J. Lightwave Technol. 13(7), 1296–1302 (1995)

    Article  Google Scholar 

  • H. Iribas, A. Loayssa, F. Sauser, M. Llera, S. Le Floch, Cyclic coding for Brillouin optical time-domain analyzers using probe dithering. Opt. Express 25, 8787–8800 (2017)

    Article  CAS  Google Scholar 

  • C. Jin, L. Wang, Y. Chen, N. Guo, W. Chung, H. Au, Z. Li, H.-Y. Tam, C. Lu, Single-measurement digital optical frequency comb based phase-detection Brillouin optical time domain analyzer. Opt. Express 25, 9213–9224 (2017)

    Article  CAS  Google Scholar 

  • M.D. Jones, Using simplex codes to improve OTDR sensitivity. IEEE Phot. Technol. Lett. 5(7), 822–824 (1993)

    Article  Google Scholar 

  • S. Le Floch, F. Sauser, M. A. Soto, L. Thévenaz, Time/frequency coding for Brillouin distributed sensors, in Proc. SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors, 84211J (2012)

    Google Scholar 

  • W. Li, X. Bao, Y. Li, L. Chen, Differential pulse-width pair BOTDA for high spatial resolution sensing. Opt. Express 16(26), 21616–21625 (2008)

    Article  CAS  Google Scholar 

  • S. G. Mallat, A Wavelet Tour of Signal Processing. (Academic, 1999)

    Google Scholar 

  • S. Martin-López, M. Alcon-Camas, F. Rodríguez-Barrios, P. Corredera, J.D. Ania-Castanón, L. Thévenaz, M. González-Herráez, Brillouin optical time-domain analysis assisted by second-order Raman amplification. Opt. Express 18(18), 18769–18778 (2010)

    Article  Google Scholar 

  • S.M. Maughen, H.H. Kee, T.P. Newson, Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter. Meas. Sci. Technol. 12(7), 834–842 (2001)

    Article  Google Scholar 

  • M. Nazarathy, S.A. Newton, R.P. Giffard, D.S. Moberly, F. Sischka, W.R. Trutna, S. Foster, Real-time long range complementary correlation optical time domain reflectometer. J. Lightwave Technol. 7(1), 24–38 (1989)

    Article  Google Scholar 

  • M. Niklès, L. Thévenaz, P.A. Robert, Brillouin gain spectrum characterization in single-mode optical fibers. J. Lightwave Technol. 15(10), 1842–1851 (1997)

    Article  Google Scholar 

  • Y. Peled, A. Motil, L. Yaron, M. Tur, Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile. Opt. Express 19, 19845–19854 (2011)

    Article  Google Scholar 

  • Y. Peled, A. Motil, M. Tur, Fast Brillouin optical time domain analysis for dynamic sensing. Opt. Express 20, 8584–8591 (2012)

    Article  Google Scholar 

  • F. Rodríguez-Barrios, S. Martín-López, A. Carrasco-Sanz, P. Corredera, J.D. Ania-Castanón, L. Thévenaz, M. González-Herráez, Distributed Brillouin fiber sensor assisted by first-order Raman amplification. J. Lightwave Technol. 28(15), 2162–2172 (2010)

    Article  Google Scholar 

  • S. Le Floch, F. Sauser, M. Llera, M. A. Soto, L. Thévenaz, Colour simplex coding for brillouin distributed sensors, in Proc. SPIE 8794, Fifth European Workshop on Optical Fibre Sensors, 879437 (2013)

    Google Scholar 

  • K. Shimizu, T. Horiguchi, Y. Koyamada, T. Kurashima, Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber. Opt. Lett. 18(3), 185–187 (1993)

    Article  CAS  Google Scholar 

  • M.A. Soto, L. Thévenaz, Modeling and evaluating the performance of Brillouin distributed optical fiber sensors. Opt. Express 21(25), 31347–31366 (2013a)

    Article  Google Scholar 

  • M.A. Soto, S. Le Floch, L. Thévenaz, Bipolar optical pulse coding for performance enhancement in BOTDA sensors. Opt. Express 21(14), 16390–16397 (2013b)

    Article  Google Scholar 

  • M. A. Soto, L. Thévenaz, Towards 1’000’000 resolved points in a distributed optical fibre sensor, in Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 9157C3 (2014)

    Google Scholar 

  • M.A. Soto, P.K. Sahu, G. Bolognini, F. Di Pasquale, Brillouin-based distributed temperature sensor employing pulse coding. IEEE Sensors J. 8(3), 225–226 (2008)

    Article  CAS  Google Scholar 

  • M.A. Soto, G. Bolognini, F. Di Pasquale, L. Thévenaz, Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range. Opt. Lett. 35(2), 259–261 (2010a)

    Article  Google Scholar 

  • M.A. Soto, G. Bolognini, F. Di Pasquale, Analysis of pulse modulation format in coded BOTDA sensors. Opt. Express 18(14), 14878–14892 (2010b)

    Article  Google Scholar 

  • M.A. Soto, G. Bolognini, F. Di Pasquale, Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification. Opt. Express 19(5), 4444–4457 (2011)

    Article  Google Scholar 

  • M.A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S.-H. Chin, J.D. Ania-Castañon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, L. Thevenaz, Extending the real remoteness of long-range Brillouin optical time-domain fiber analyzers. J. Lightwave Technol. 32(1), 152–162 (2014a)

    Article  Google Scholar 

  • M.A. Soto, A.L. Ricchiuti, L. Zhang, D. Barrera, S. Sales, L. Thévenaz, Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers. Opt. Express 22, 28584–28595 (2014b)

    Article  Google Scholar 

  • M.A. Soto, J.A. Ramírez, L. Thévenaz, Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration. Nat. Commun. 7, 10870 (2016)

    Article  CAS  Google Scholar 

  • M. A. Soto, J. A. Ramírez, L. Thévenaz, Image and video denoising for distributed optical fibre sensors, in Proc. SPIE 10323, 25th International Conference on Optical Fiber Sensors, 103230K (2017)

    Google Scholar 

  • K.D. Souza, Significance of coherent Rayleigh noise in fibre-optic distributed temperature sensing based on spontaneous Brillouin scattering. Meas. Sci. Technol. 17(5), 1065–1069 (2006)

    Article  Google Scholar 

  • K.D. Souza, T.P. Newson, Improvement of signal-to-noise capabilities of a distributed temperature sensor using optical preamplification. Meas. Sci. Technol. 12(7), 952–957 (2001)

    Google Scholar 

  • L. Thévenaz, S.F. Mafang, J. Lin, Effect of pulse depletion in a Brillouin optical time-domain analysis system. Opt. Express 21(12), 14017–14035 (2013)

    Article  Google Scholar 

  • J. Urricelqui, A. Zornoza, M. Sagues, A. Loayssa, Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation. Opt. Express 20(24), 26942–26949 (2012)

    Article  Google Scholar 

  • J. Urricelqui, M. Sagues, A. Loayssa, Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses. Opt. Express 23, 30448–30458 (2015)

    Article  Google Scholar 

  • A. Voskoboinik, O.F. Yilmaz, A.W. Willner, M. Tur, Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA). Opt. Express 19, B842–B847 (2011)

    Article  Google Scholar 

  • P.C. Wait, T.P. Newson, Landau Placzek ratio applied to distributed fibre sensing. Opt. Commun. 122, 141–146 (1996a)

    Article  CAS  Google Scholar 

  • P.C. Wait, T.P. Newson, Reduction of coherent noise in the Landau Placzek ratio method for distributed fibre optic temperature sensing. Opt. Commun. 131, 285–289 (1996b)

    Article  CAS  Google Scholar 

  • P.C. Wait, K.D. Souza, T.P. Newson, A theoretical comparison of spontaneous Raman and Brillouin based fibre optic distributed temperature sensors. Opt. Commun. 144, 17–23 (1997)

    Article  CAS  Google Scholar 

  • Z. Yang, M.A. Soto, L. Thévenaz, Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors. Opt. Express 24, 586–597 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo A. Soto .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Soto, M.A. (2019). Distributed Brillouin Sensing: Time-Domain Techniques. In: Peng, GD. (eds) Handbook of Optical Fibers. Springer, Singapore. https://doi.org/10.1007/978-981-10-7087-7_7

Download citation

Publish with us

Policies and ethics