Skip to main content

Local Diagonal Laplacian Pattern A New MR and CT Image Feature Descriptor

  • Conference paper
  • First Online:
Progress in Advanced Computing and Intelligent Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 563))

Abstract

Feature extraction of medical images is a challenging task due to variation in modalities and imaged objects (organs, tissues and specific pathologies). This article presents a simple feature descriptor, local diagonal Laplacian pattern (LDLP), devised on the idea of local diagonal extrema pattern (LDEP). LDEP is implemented using first-order diagonal derivatives, whereas LDLP uses Laplacian operation. In order to reduce computational complexity, the intensities at each diagonal element are correlated to the rest of the three diagonal elements together with the centre pixel. Furthermore, the corner elements are compared with the centre pixel to improve the quality of feature description. In addition, the dimension of the pattern is lowered by a half. LDLP is applied to various MR, CT images of the TCIA database and CT images of the NEMA database that results in better feature description at less computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dhawan, A.P.: Introduction. In: Medical Image Analysis. pp. 1–22, John Wiley and Sons Inc., New Jersy (2011)

    Google Scholar 

  2. Nixon, M.S., Aguado, A.S.: Low-level feature extraction (including edge detection). In: Feature Extraction and Image Processing for Computer Vision, 3rd edn., pp. 137–216. Academic Press, London (2012)

    Google Scholar 

  3. Krig, S.: Interest point detector and feature descriptor survey. In: Computer Vision Metrics: Survey, Taxonomy, and Analysis, pp. 217–282. Apress (2014)

    Google Scholar 

  4. Ojala, T., Pietik\(\ddot{\text{a}}\)inen, M., Maenpaa T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 971–987 (2002)

    Google Scholar 

  5. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Local binary patterns for still images. In: Computer Vision using Local Binary Patterns, pp. 13–47, Springer, London (2011)

    Google Scholar 

  7. Zhao, G., Pietikäinen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)

    Google Scholar 

  8. Hikkilä, M., Pietikänen, M., Scmid, C.: Description of interest regions with center-symmetric local binary patterns. In: 5th Indian Conference, ICVGIP 2006, pp. 58–69. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  9. Ren, J., Jiang, X., Yuan, J., Wang, G.: Optimizing LBP Structure for visual recognition using binary quadratic programming. IEEE Signal Process. Lett. 21(11), 1346–1350 (2014)

    Article  Google Scholar 

  10. Wang, K., Bichot, C.E., Zhu, C., Li, B.: Pixel to patch sampling structure and local neighboring intensity relationship patterns for texture classification. IEEE Signal Process. Lett. 20(9), 853–856 (2013)

    Article  Google Scholar 

  11. Murala, S., Wu, Q.M.J.: Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. IEEE J. Biomed. Health Inform. 18(3), 929–938 (2014)

    Article  Google Scholar 

  12. Murala, S., Wu, Q.M.J.: Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval. Neurocomputing 119, 399–412 (2013)

    Article  Google Scholar 

  13. Qi, X., Shen, L., Zhao, G., Li, Q., Pietik\(\ddot{a}\)nen, M.: Globally rotation invariant multi-scale co-occurrence local binary. Pattern Image Vis. Comput. 43, 16–26 (2015)

    Google Scholar 

  14. Murala, S., Maheswari, R.P., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 21(5), 2874–2886 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kaya, Y., Ertuğrul, Ö.F., Tekin, R.: Two novel local binary pattern descriptors for texture analysis. Appl. Soft Comput. 34, 728–735 (2015)

    Google Scholar 

  16. Dubey, S.R., Singh, S.K., Singh, R.K.: Local wavelet pattern: a new feature descriptor for image retrieval in medical CT databases. IEEE Trans. Image Process. 24(12), 5892–5903 (2015)

    Article  MathSciNet  Google Scholar 

  17. Dubey, S.R., Singh, S.K., Singh, R.K.: Local bit-plane decoded pattern: a novel feature descriptor for biomedical image retrieval. IEEE J. Biomed. Health Inform. 99 (2015)

    Google Scholar 

  18. Dubey, S.R., Singh, S.K., Singh, R.K.: Local diagonal extrema pattern: a new and efficient feature descriptor for CT image retrieval. IEEE Signal Process. Lett. 22(9), 1215–1219 (2015)

    Article  Google Scholar 

  19. Gupta, R., Patil, H., Mittal, A.: Robust order-based methods for feature description. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 334–341. San Francisco (2010)

    Google Scholar 

  20. Haralick, R.M., Shapiro, L.G.: Conditioning and labeling. In: Computer and Robot Vision, pp. 303–357, Addison-Wesley Longman Publishing Co. Inc., Boston (1992)

    Google Scholar 

  21. DICOM Library. http://www.dicomlibrary.com/

  22. The Cancer Imaging Archive (TCIA) Public Access. https://wiki.cancerimagingarchive.net/display/Public/TCGA-PRAD

  23. Digital Imaging and Communications in Medicine (NEMA) Database. ftp://medical.nema.org/medical/Dicom/Multiframe/

  24. The Cancer Genome Atlas, National Cancer Institute, National Human Genome Research Institute. https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp

  25. The Cancer Imaging Archive (TCIA) Public Access. https://wiki.cancerimagingarchive.net/display/Public/RIDER+NEURO+MRI

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Reddy Yelampalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yelampalli, P.K.R., Nayak, J. (2018). Local Diagonal Laplacian Pattern A New MR and CT Image Feature Descriptor. In: Saeed, K., Chaki, N., Pati, B., Bakshi, S., Mohapatra, D. (eds) Progress in Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing, vol 563. Springer, Singapore. https://doi.org/10.1007/978-981-10-6872-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6872-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6871-3

  • Online ISBN: 978-981-10-6872-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics