Skip to main content

Simulation of Fracture Behavior of Weldments

  • Living reference work entry
  • First Online:
Handbook of Mechanics of Materials

Abstract

In this chapter, the fracture behavior of an S355 electron beam welded joint is simulated with the Rousselier, Gurson-Tvergaard-Needleman (GTN), and cohesive zone models separately. First, each model is discussed and the method identifying the model parameters is given. Second, the simulation results on the crack propagation of compact tension (C(T)) specimens with the initial crack located at different weld regions are given. Finally, the cohesive zone model is compared with the other two models, showing its superiority.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. ISO 4063. “Welding and allied processes – nomenclature of processes and reference numbers”. 1998.

    Google Scholar 

  2. Rousselier G. Ductile fracture models and their potential in local approach of fracture. Nucl Eng Des. 1987;105:97–111.

    Article  Google Scholar 

  3. Rousselier G. The Rousselier model for porous metal plasticity and ductile fracture. In: Handbook of materials behaviour models; London: Academic Press; 2001. p. 436–45.

    Google Scholar 

  4. Schmauder S, Uhlmann D, Zies G. Experimental and numerical investigations of two material states of the material 15NiCuMoNb5 (WB 36). Comput Mater Sci. 2002;25:174–92.

    Article  Google Scholar 

  5. Seidenfuss M. Untersuchungen zur Beschreibung des Versagensverhaltens mit Hilfe von Schädigungsmodellen am Beispiel des Werkstoffs 20MnMoNi55. Dissertation, Universität Stuttgart; 1992.

    Google Scholar 

  6. Tu HY, Schmauder S, Weber U, Rudnik Y, Ploshikhin V. Simulation of the damage behavior of electron beam welded joints with the Rousselier model. Eng Fract Mech. 2013;103:153–61.

    Article  Google Scholar 

  7. Mohanta A. Numerical determination of failure curves. Master thesis, University of Stuttgart; 2003.

    Google Scholar 

  8. Weber U, Mohanta A, Schmauder S. Numerical determination of parameterised failure curves for ductile structural materials. Int J Mater Res. 2007;98:1071–80.

    Article  Google Scholar 

  9. Tu HY. Numerical simulation and experimental investigation of the fracture behaviour of an electron beam welded steel joint. Dissertation, University of Stuttgart; 2016.

    Google Scholar 

  10. Gurson AL. Continuum theory of ductile rupture by void nucleation and growth, Part I – yield criteria and flow rules for porous ductile media. J Eng Mater Technol. 1977;99:2–15.

    Article  Google Scholar 

  11. Tvergaard V. On localization in ductile materials containing spherical voids. Int J Fract. 1982;18:237–52.

    Google Scholar 

  12. Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 1984;38:157–69.

    Article  Google Scholar 

  13. Tvergaard V. Influence of void nucleation on ductile shear fracture at a free surface. J Mech Phys Solids. 1982;30:399–425.

    Article  MATH  Google Scholar 

  14. Tvergaard V, Needleman A. The modified Gurson model. In: Handbook of materials behaviour models. New York: Academic; 2001. p. 430–5.

    Chapter  Google Scholar 

  15. Needleman A, Rice JR. Limits to ductility by plastic flow localization. In: Mechanics of metal sheet forming. New York: Plenum Press; 1978. p. 237–67.

    Chapter  Google Scholar 

  16. Chu CC, Needleman A. Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol. 1980;102:249–56.

    Article  Google Scholar 

  17. Needleman A. A continuum model for void nucleation by inclusion debonding. J Appl Mech ASME. 1987;54:525–31.

    Article  MATH  Google Scholar 

  18. Xia L, Shih CF. Ductile crack growth – III. Transition to cleavage fracture incorporating statistics. J Mech Phys Solids. 1996;44:603–39.

    Article  Google Scholar 

  19. Steglich D. Structure damage simulation. In: Roters F, Barlat F, Chen LQ, editors. Continuum scale simulation of engineering materials: fundamentals – microstructures – process applications. Weinheim: Wiley-VCH; 2004.

    Google Scholar 

  20. Dugdale DS. Yielding of steel sheets containing slits. J Mech Phys Solids. 1960;8:100–4.

    Article  Google Scholar 

  21. Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech. 1962;7:55–129.

    Article  MathSciNet  Google Scholar 

  22. Hillerborg A, Modéer M, Petersson P-E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res. 1976;6:773–82.

    Article  Google Scholar 

  23. Needleman A. An analysis of decohesion along an imperfect interface. Int J Fract. 1990;42:21–40.

    Article  Google Scholar 

  24. Tvergaard V, Hutchinson JW. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids. 1992;40:1377–97.

    Article  MATH  Google Scholar 

  25. Scheider I. Bruchmechanische Bewertung von Laserschweißverbindungen durch numerische Rissfortschrittsimulation mit dem Kohäsivzonenmodell. Dissertation, TU Hamburg-Harburg, Geesthacht; 2001.

    Google Scholar 

  26. ABAQUS Theory manual 6.11. Hibbitt, Karlsson & Sorensen. 2011.

    Google Scholar 

  27. ASTM E 1820–96. Standard test method for measurement of fracture toughness. In: Annual book of ASTM standards, vol. 03.01. Philadelphia: American Society for Testing and Materials. 1996.

    Google Scholar 

  28. Tu H, Schmauder S, Weber U. Numerical study of electron beam welded butt joints with the GTN model. Comput Mech. 2012;50:245–55.

    Article  MATH  Google Scholar 

  29. Tu HY, Schmauder S, Weber U. Simulation of the fracture behavior of an S355 electron beam welded joint by cohesive zone modeling. Eng Fract Mech. 2016;163:303–12.

    Article  Google Scholar 

  30. Schwalbe K-H, Scheider I, Cornec A. SIAM CM09 – the SIAM method for application cohesive models of the damage behaviour of engineering materials and structures. GKSS report, 2009/1, GKSS-Forschungszentrum Geesthacht; 2009.

    Google Scholar 

  31. Chen CR, Kolednik O, Scheider I, Siegmund T, Tatschl A, Fischer FD. On the determination of the cohesive zone parameters for the modelling of microductile crack growth in thick specimens. Int J Fract. 2003;120:417–536.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyun Tu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tu, H., Schmauder, S., Li, Y. (2018). Simulation of Fracture Behavior of Weldments. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6855-3_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6855-3_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6855-3

  • Online ISBN: 978-981-10-6855-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics