Skip to main content

Agricultural Nanotechnologies: Current Applications and Future Prospects

  • Chapter
  • First Online:
Microbial Biotechnology

Abstract

Agriculture has been the primary source of food and nutrients for mankind since ancient civilization. Increase in world population has necessitatedthe use of modern technologies such as biotechnology and nanotechnologyin agricultural sciences to enhance its productivity as well as quality. The article attempts to highlight some of the most promising and important applications of nanotechnology in agriculture; and also recommends strategies for advancing the best scientific and technological knowledge presently being used to overcome its limitations for large scale application. Nanotechnology provides new agrochemical agents and new delivery mechanisms to improve crop productivity and also promising methods to reduce pesticide use. Recent advancements in nanoscience have great impact on agricultural practices and food industry. Nanotechnology can enhance agricultural production through different approaches and techniques such as nanoformulations of agrochemicals , nanosensors/nanobiosensors, genetic manipulation of crops through nanodevices, nanocomposites or nanobio-composites, hydroponics, organic farming, health and breeding of animal/ poultry and also through postharvest management with smarter, stronger, cost-effective packaging materials. The adverse impact that might occur to the human health, as well as the surrounding ecology or ecosystem could be minimized by following precautionary rules associated with nanotechnology. Moreover restricting the use of chemical fertilizers, soil degradation and importantly curbing of wastage of food can lead to a hunger free world. Development of plants having disease resistance, plants producing essential vitamins, proteins and hormones, plus their better preservation, packaging, transport and delivery are further required for survival and prosperity of the human race in the planet earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adak T, Kumar J, Shakil NA, Walia S (2012) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Health B 47(3):217–225

    Article  CAS  PubMed  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671

    Article  CAS  PubMed  Google Scholar 

  • Ali J, Najeeb J, Ali MA, Aslam MF, Raza A (2017) Biosensors: their fundamentals, designs, types and most recent impactful applications: a review. J Biosens Bioelectron 8:1

    Article  Google Scholar 

  • Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion--a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68(2):158–163

    Article  CAS  PubMed  Google Scholar 

  • Ardekani MRS, Abdin MZ, Nasrullah N, Samim M (2014) Calcium phosphate nanoparticles a novel non-viral gene delivery system for genetic transformation of tobacco. Int J Pharm Pharm Sci 6(6):605–609

    CAS  Google Scholar 

  • Arlett JL, Myers EB, Roukes ML (2011) Comparative advantages of mechanical biosensors. Nat Nanotechnol 6:203–215

    Article  CAS  PubMed  Google Scholar 

  • Bagheri F, Piri K, Mohsenifar A, Ghaderi S (2017) FRET-based nanobiosensor for detection of scopolamine in hairy root extraction of Atropa belladonna. Talanta 164:593–600

    Article  CAS  PubMed  Google Scholar 

  • Ban C, Park SJ, Lim S et al (2015) Improving flavonoid bioaccessibility using an edible oil-based lipid nanoparticle for oral delivery. J Agric Food Chem 63:5266–5272

    Article  CAS  PubMed  Google Scholar 

  • Barahuie F, Hussein MZ, Hussein-Al-Ali SH et al (2013) Preparation and controlled-release studies of a protocatechuic acid-magnesium/aluminum-layered double hydroxide nanocomposite. Int J Nanomedicine 8:1975–1987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barkalina N, Jones C, Kashir J et al (2014) Effects of mesoporous silica nanoparticles upon the function of mammalian sperm in vitro. Nanomedicine 10:859–870

    Article  CAS  PubMed  Google Scholar 

  • Benzon HRL, Rubenecia MRU, Ultra VU Jr, Lee SC (2015) Nano-fertilizer affects the growth, development, and chemical properties of rice. Int J Agric Res 7(1):105–117

    Google Scholar 

  • Bhandari G (2014) An overview of agrochemicals and their effects on environment in Nepal. Appl Ecol Environ Sci 2(2):66–73

    Google Scholar 

  • Boehm AL, Martinon I, Zerrouk R et al (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20(4):433–441

    Article  CAS  PubMed  Google Scholar 

  • Bogue R (2011) Nanocomposites: a review of technology and applications. Assem Autom 31:106–112

    Article  Google Scholar 

  • Bulbul G, Hayat A, Andreescu S (2015) Portable nanoparticle-based sensors for food safety assessment. Sensors (Basel) 15(12):30736–30758

    Article  CAS  Google Scholar 

  • Cao J, Guenther RH, Sit TL et al (2015) Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control. ACS Appl Mater Interfaces 7(18):9546–9553

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Zhang H, Cao C et al (2016) Quaternized chitosan-capped mesoporous silica nanoparticles as nanocarriers for controlled pesticide release. Nanomaterials (Basel) 6(7):126

    Article  CAS  Google Scholar 

  • Chang YC, Lin YS, Xiao GT et al (2016) A highly selective and sensitive nanosensor for the detection of glyphosate. Talanta 161:94–98

    Article  CAS  PubMed  Google Scholar 

  • Chauhan N, Gopal DM, Kumar R, Kim K-H, Kumar S (2016) Development of chitosan nanocapsules for the controlled release of hexaconazole. Int J Biol Macromol 97:616–624

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Wu L, Jiang X et al (2014) Target triggered self-assembly of Au nanoparticles for amplified detection of Bacillus thuringiensis transgenic sequence using SERS. Biosens Bioelect 62:196–200

    Article  CAS  Google Scholar 

  • Chen G, Qiu J, Liu Y et al (2015) Carbon nanotubes act as contaminant carriers and translocate within plants. Sci Rep 2015(5):15682

    Article  CAS  Google Scholar 

  • Cheng HN, Klasson KT, Asakura T, Wu Q (2016) Nanotechnology in agriculture. In: Cheng HN, Doemeny L, Geraci CL, Schmidt DG (eds) Nanotechnology: delivering on the promise, vol 2, ACS symposium series, vol 1224. American Chemical Society, Washington, DC, pp 233–242

    Chapter  Google Scholar 

  • Choi WG, Gilroy S (2014) Plant biologists FRET over stress. eLife 3:e02763

    PubMed  PubMed Central  Google Scholar 

  • Cortesi R, Valacchi G, Muresan X-M et al (2017) Nanostructured lipid carriers (NLC) for the delivery of natural molecules with antimicrobial activity: production, characterization and in vitro studies. J Microencapsul 34:63–72

    Article  CAS  PubMed  Google Scholar 

  • Crippa P, Castruccio S, Archer-Nicholls S et al (2016) Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Sci Rep 6(37074):1–9

    Google Scholar 

  • Da Silva ACN, Deda DK, Da Roz AL et al (2013) Nanobiosensors based on chemically modified afm probes: a useful tool for metsulfuron-methyl detection. Sensors 13:1477–1489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deshpande P, Dapkekar A, Oak MD et al (2017) Zinc complexed chitosan/TPP nanoparticles: a promising micronutrient nanocarrier suited for foliar application. Carbohydr Polym 165:394–401

    Article  CAS  PubMed  Google Scholar 

  • Ebina K, Shi K, Hirao M et al (2013) Oxygen and air Nanobubble water solution promote the growth of plants, fishes, and mice. PLoS One 8(6):e65339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2017) The future of food and agriculture – trends and challenges, Rome

    Google Scholar 

  • FDA (2005) Glossary of pesticide chemicals. http://www.fda.gov/

  • FDA (2014) Pesticide residue monitoring program fiscal year report. https://www.fda.gov/downloads/Food/.../Pesticides/UCM546325

  • Fouad M, Kaji N, Jabasini M et al (2008) Nanotechnology meets plant biotechnology: carbon nanotubes deliver DNA and incorporate into the plant cell structure, 12th international conference on miniaturized systems for chemistry and life sciences, 2008, San Diego, CA, USA

    Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA et al (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4(20). https://doi.org/10.3389/fenvs.2016.00020.

  • Fuentes-Castaneda O, Dominguez-Patiño ML, Dominguez-Patino J et al (2016) Effect of electric field on the kinetics of growth of lettuce (Lactuca sativa) in a hydroponic system. J Agric Chem Environ 5:113–120

    Google Scholar 

  • Giroto AS, Guimaraes GGF, Foschini M, Ribeiro C (2017) Role of slow-release nanocomposite fertilizers on nitrogen and phosphate availability in soil. Sci Rep 7(46032):1–11

    Google Scholar 

  • González-Melendi P, Fernandez-Pacheco R, Coronado MJ et al (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101(1):187–195

    Article  PubMed  Google Scholar 

  • Gul HT, Saeed S, Khan FZA, Manzoor SA (2014) Potential of nanotechnology in agriculture and crop protection: a review. Appl Sci Bus Econ 1(2):23–28

    Google Scholar 

  • Hill EK, Li J (2017) Current and future prospects for nanotechnology in animal production. J Anim Sci Biotechnol 8:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu CW, Lin ZY, Chan TY et al (2017) Oxidized multiwalled carbon nanotubes decorated with silver nanoparticles for fluorometric detection of dimethoate. Food Chem 224:353–358

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Wang L, Liu L et al (2015) Nanotechnology in agriculture, livestock, and aquaculture in China: a review. Agron Sustain Dev 35:369–400

    Article  Google Scholar 

  • Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16

    Article  CAS  Google Scholar 

  • Jahanban L, Davari M (2014) Organic agriculture and nanotechnology. In: Rahmann G, Aksoy U (eds.) Proceedings of the 4th ISOFAR scientific conference. ‘Building Organic Bridges’, at the Organic World Congress, Istanbul, Turkey

    Google Scholar 

  • James A, Zikankuba V (2017) Post harvest management of fruits and vegetable: a potential for reducing poverty, hidden hunger and malnutrition in sub-Sahara Africa. Cogent Food Agric 3:1312052

    Google Scholar 

  • Jamir A, Mahato M (2016) A review on protein based nanobiocomposite for biosensor application. Rev Adv Sci Eng 5:109–122

    Article  Google Scholar 

  • Kah M, Weniger AK, Hofmann T (2016) Impacts of (nano) formulations on the fate of an insecticide in soil and consequences for environmental exposure assessment. Environ Sci Technol 50:10960–10967

    Article  CAS  PubMed Central  Google Scholar 

  • Khaldun BM, Huang W, Haiyan L et al (2016) Comparative profiling of miRNAs and target gene identification in distant-grafting between tomato and Lycium (Goji Berry). Front Plant Sci 7(1475):1–18

    Google Scholar 

  • Khati P, Chaudhary P, Gangola S, Bhatt P, Sharma A (2017) Nanochitosan supports growth of Zea mays and also maintains soil health following growth. 3 Biotech 7(1):81

    Article  PubMed  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM et al (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Khot LR, Sankaran S, Maja JM et al (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Lamsal K, Kim SW, Jung JH et al (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39(3):194–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau HY, Wu H, Wee EJH et al (2017) Specific and sensitive isothermal electrochemical biosensor for plant pathogen DNA detection with colloidal gold nanoparticles as probes. Sci Rep 7:38896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima R, Feitosa LO, Maruyama CR et al (2012) Evaluation of the genotoxicity of cellulose nanofibers. Int J Nanomedicine 7:3555–3565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu CM, Zhang CY, Wen JQ et al (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21(3):168–171

    CAS  Google Scholar 

  • Maghari BM, Ardekani AM (2011) Genetically modified foods and social concerns. Avicenna J Med Biotech 3(3):109–117

    Google Scholar 

  • Mahajan PV, Caleb OJ, Singh Z, Watkins CB, Geyer M (2014) Postharvest treatments of fresh produce. Phil Trans R Soc A 372:20130309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik S, Kumar A (2014) Approach for nano-particle synthesis: using as nano-fertilizer. Int J Pharm Res Bio-Sci 3(3):519–527

    CAS  Google Scholar 

  • McMurray TA, Dunlop PSM, Byrne JA (2006) The photocatalytic degradation of atrazine on nanoparticulate TiO2 films. J Photochem Photobiol A Chem 182:43–51

    Article  CAS  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM et al (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8(172):1–25

    Google Scholar 

  • Menaa F (2015) Genetic engineering and nanotechnology: when science-fiction meets reality! Adv Genet Eng 4(2):1000128

    Google Scholar 

  • Milani N, Hettiarachchi GM, Kirby JK et al (2015) Fate of zinc oxide nanoparticles coated onto macronutrient fertilizers in an alkaline calcareous soil. Plos One 10:e0126275. https://doi.org/10.1371/journal.pone.0126275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Misra AN, Misra M, Singh R (2013) Nanotechnology in agriculture and food industry. Int J Pure Appl Sci Technol 16(2):1–9

    CAS  Google Scholar 

  • Mohammadi M, Pezeshki A, Abbasi MM et al (2017) Vitamin D3-loaded nanostructured lipid carriers as a potential approach for fortifying food beverages; in vitro and in vivo evaluation. Adv Pharm Bull 7(1):61–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Moll J, Okupnik A, Gogos A et al (2016) Effects of titanium dioxide nanoparticles on red clover and its rhizobial symbiont. PLoS One 11(5):e0155111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreira FKV, Camargo LAD, Marconcini JM, Mattoso LHC (2013) Nutraceutically inspired pectin−Mg(OH)2 nanocomposites for bioactive packaging applications. J Agric Food Chem 61:7110–7119

    Article  CAS  PubMed  Google Scholar 

  • Muktar Y, Bikila T, Keffale M (2015) Application of nanotechnology for animal health and production improvement: a review. World Appl Sci J 33(10):1588–1596

    Google Scholar 

  • Nabifarkhani N, Sharifani M, Garmakhany AD et al (2015) Effect of nano-composite and Thyme oil (Tymus Vulgaris) coating on fruit quality of sweet cherry (Takdaneh Cv) during storage period. Food Sci Nutr 3(4):349–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy L, Magyar M, Szabo T et al (2014) Photosynthetic machineries in nano-systems. Curr Protein Pept Sci 15(4):363–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Crime Records Bureau (NCRB) (2013) Accidental Deaths & Suicides in India (ADSI) annual reports. http://ncrb.nic.in/StatPublications/ADSI/PrevPublications.htm

  • National Crime Records Bureau (NCRB) (2014) Accidental Deaths & Suicides in India (ADSI) annual reports. http://ncrb.nic.in/StatPublications/ADSI/PrevPublications.htm

  • National Crime Records Bureau (NCRB) (2015) Accidental Deaths & Suicides in India (ADSI) annual reports. http://ncrb.nic.in/StatPublications/ADSI/ADSI2015/ADSI2015.asp

  • Nguyen NT, McInturf SA, Mendoza-Cózat DG (2016) Hydroponics: a versatile system to study nutrient allocation and plant responses to nutrient availability and exposure to toxic elements. J Vis Exp 113:e54317

    Google Scholar 

  • Nhan LV, Ma C, Rui Y (2015) The effects of Fe2O3 nanoparticles on physiology and insecticide activity in non-transgenic and Bt-Transgenic cotton. Front Plant Sci 6:1263

    PubMed  Google Scholar 

  • Niu W, Guo L, Li Y et al (2016) Highly selective two-photon fluorescent probe for ratiometric sensing and imaging cysteine in mitochondria. Anal Chem 88(3):1908–1914

    Article  CAS  PubMed  Google Scholar 

  • Odhiambo JF, DeJarnette JM, Geary TW et al (2014) Increased conception rates in beef cattle inseminated with nanopurified bull semen. Biol Reprod 91(4):97

    Article  PubMed  CAS  Google Scholar 

  • Oliver MJ (2014) Why we need GMO crops in agriculture. Mo Med 111(6):492–507

    PubMed  Google Scholar 

  • Omanovic-Miklicanin E, Maksimovic M (2016) Nanosensors applications in agriculture and food industry. Bull Chem Technol Bosnia Herzegovina 47:59–70

    Google Scholar 

  • Palmieri V, Bugli F, Lauriola MC et al (2017) Bacteria meet graphene: modulation of graphene oxide nanosheet interaction with human pathogens for effective antimicrobial therapy. ACS Biomater Sci Eng 3(4):619–627

    Article  CAS  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8(537):1–15

    PubMed  PubMed Central  Google Scholar 

  • Parisi C, Vigani M, Rodriguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127

    Article  CAS  Google Scholar 

  • Pereira MM, Mouton L, Yepremian C et al (2014) Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris. J Nanobiotechnol 12:15

    Article  CAS  Google Scholar 

  • Pereira AES, Sandoval-Herrera IE, Zavala-Betancourt SA, Oliveira HC, Ledezma-Perez AS, Romero J, Fraceto LF (2016) Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: characterization and evaluation of biological activity. Carbohydr Polym 157:1862–1873

    Article  PubMed  CAS  Google Scholar 

  • Poscic F, Mattiello A, Fellet G et al (2016) Effects of cerium and titanium oxide nanoparticles in soil on the nutrient composition of barley (Hordeum vulgare L.) Kernels. Int J Environ Res Public Health 13(6):577

    Article  PubMed Central  CAS  Google Scholar 

  • Pradhan N, Singh S, Ojha N et al (2015) Facets of nanotechnology as seen in food processing, packaging, and preservation industry. Biomed Res Int 2015:1–17

    Article  CAS  Google Scholar 

  • Puggal S, Dhall N, Singh N, Litt MS (2016) A review on polymer nanocomposites: synthesis, characterization and mechanical properties. Indian J Sci Technol 9(4):1–6

    Article  CAS  Google Scholar 

  • Pyrgiotakis G, Vedantam P, Cirenza C et al (2016) Optimization of a nanotechnology based antimicrobial platform for food safety applications using engineered water nanostructures (EWNS). Sci Rep 6:21073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324

    Article  CAS  Google Scholar 

  • Rajonee AA, Zaman S, Huq SMI (2017) Preparation, characterization and evaluation of efficacy of phosphorus and potassium incorporated nano fertilizer. Adv Nanopart 6:62–74

    Article  Google Scholar 

  • Ramasamy M, Kim S, Lee SS, Yi DK (2016) Recyclable photo-thermal nano-aggregates of magnetic nanoparticle conjugated gold nanorods for effective pathogenic bacteria lysis. J Nanosci Nanotechnol 16:555–561

    Article  CAS  PubMed  Google Scholar 

  • Reganold JP, Wachter JM (2016) Organic agriculture in the twenty-first century. Nat Plants 2:1–8

    Google Scholar 

  • Rui M, Ma C, Hao Y et al (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabir S, Arshad A, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:925494

    Article  CAS  Google Scholar 

  • Schneider J, Börner D, Rosmalen PV, Specht M (2015) Augmenting the senses: a review on sensor-based learning support. Sensors 15:4097–4133

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekhon H, Ennew C, Kharouf H, Devlin J (2014) Trustworthiness and trust: influences and implications. J Mark Manage 30(3-4):409–430

    Article  Google Scholar 

  • Semo E, Kesselman ED, Livney DYD (2007) Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocoll 21:936–942

    Article  CAS  Google Scholar 

  • Singh A, Singh S, Prasad SM (2016) Scope of nanotechnology in crop science: profit or loss. Res Rev J Bot Sci 5(1):1–4

    Google Scholar 

  • Sirirat N, Lu JJ, Hung AT, Lien TF (2013) Effect of different levels of nanoparticles chromium picolinate supplementation on performance, egg quality, mineral retention, and tissues minerals accumulation in layer chickens. J Agric Sci 5:150–159

    Google Scholar 

  • Srilatha B (2011) Nanotechnology in agriculture. J Nanomed Nanotechnol 2(123):7. https://doi.org/10.4172/2157-7439.1000123

    Google Scholar 

  • Taher MA, Mazaheri L, Ashkenani H et al (2014) Determination of nickel in water, food, and biological samples by electrothermal atomic absorption spectrometry after preconcentration on modified carbon nanotubes. J AOAC Int 97:225–231

    Article  CAS  PubMed  Google Scholar 

  • The World’s Cities (2016) United Nations, Department of Economic and Social Affairs, Population Division. Data booklet (ST/ESA/ SER.A/392), pp 1–26

    Google Scholar 

  • Thornton PK (2010) Livestock production: recent trends, future prospects. Philos Trans R Soc B 365:2853–2867

    Article  Google Scholar 

  • Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300

    Article  CAS  PubMed  Google Scholar 

  • Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196

    Article  CAS  PubMed  Google Scholar 

  • Ushikubo FY, Furukawa T, Nakagawa R et al (2010) Evidence of the existence and the stability of nano-bubbles in water. Colloids Surf A Physicochem Eng Asp 361:31–37

    Article  CAS  Google Scholar 

  • Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22(12):2848–2853

    Article  CAS  PubMed  Google Scholar 

  • Vasimalai N, John SA (2013) Biopolymer capped silver nanoparticles as fluorophore for ultrasensitive and selective determination of malathion. Talanta 115:24–31

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Sun C, Zhao X et al (2016) The application of nano-TiO2 photo semiconductors in agriculture. Nanoscale Res Lett 11:529

    Article  PubMed  PubMed Central  Google Scholar 

  • World Bank (2017) Enabling the business of agriculture. World Bank, Washington, DC. https://doi.org/10.1596/978-1-4648-1021-3

    Book  Google Scholar 

  • Wu Z, Xu XL, Zhang JZ et al (2017) Magnetic cationic amylose nanoparticles used to deliver survivin-small interfering RNA for gene therapy of hepatocellular carcinoma in vitro. Nanomat 7(110):1–13

    Google Scholar 

  • Wyser Y, Adams M, Avella M et al (2016) Outlook and challenges of nanotechnologies for food packaging. Packag Technol Sci 29:615–648

    Article  CAS  Google Scholar 

  • Yearla SR, Padmasree K (2016) Exploitation of subabul stem lignin as a matrix in controlled release agrochemical nanoformulations: a case study with herbicide diuron. Environ Sci Pollut Res Int 23(18):18085–18098

    Article  CAS  PubMed  Google Scholar 

  • Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Tech Agri 3(17):1–26

    Google Scholar 

  • Zhang C, Wohlhueter R, Zhang H (2016) Genetically modified foods: a critical review of their promise and problems. Food Sci Human Wellness 5(3):116–123

    Article  Google Scholar 

  • Zhao L, Peng B, Hernandez-Viezcas JA et al (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein and lipid peroxidation. ACS Nano 6(11):9615–9622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Huang Y, Hannah-Bick C et al (2016) Application of metabolomics to assess the impact of Cu(OH)2 nanopesticide on the nutritional value of lettuce (Lactuca sativa): enhanced Cu intake and reduced antioxidants. NanoImpact 3(4):58–66

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Dr. Leonardo F. Fraceto of Department of Environmental Engineering, São Paulo State University, Sorocaba, Brazil for giving permission to include their Fig. 1.1 (as Fig. 1.2) and to Dr. Claudia Parisi of European Commission, Joint Research Centre (JRC), Institute for Prospective Technological Studies (IPTS), Edificio Expo, C/ Inca Garcilaso3, 41,092 Seville, Spain for giving permission to include their table (as Table 1.2) in the current chapter. We are also grateful to Frontiers in Environmental Science and Nano Today journal for permission to include the figure and table under creative commons open access licence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Kumar Patra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kerry, R.G., Gouda, S., Das, G., Vishnuprasad, C.N., Patra, J.K. (2017). Agricultural Nanotechnologies: Current Applications and Future Prospects. In: Patra, J., Vishnuprasad, C., Das, G. (eds) Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6847-8_1

Download citation

Publish with us

Policies and ethics