Skip to main content

Atmospheric Reactions of PAH Derivatives: Formation and Degradation

  • Chapter
  • First Online:
Polycyclic Aromatic Hydrocarbons

Abstract

Polycyclic aromatic compounds are ubiquitous atmospheric pollutants with toxic, mutagenic, and carcinogenic properties. They are produced from the chemical reactions of their parent or related compounds in the atmosphere as well as from a wide variety of anthropogenic sources, such as fuel combustion. In this chapter, chemical reaction pathways for the atmospheric secondary formation of several polycyclic aromatic hydrocarbon (PAH) derivatives, i.e., gas-phase formation of mutagenic 1- and 2-nitrotriphenylene via OH or NO3 radical-initiated reactions of the parent triphenylene, formation of carcinogenic 1-nitropyrene from heterogeneous nitration of pyrene on mineral dust aerosols, atmospheric formation of hydroxynitropyrenes from a photochemical reaction of 1-nitropyrene, and photochemical degradation of selected nitrated and oxygenated PAHs on airborne particles under simulated solar UV irradiation, are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson R, Arey J (1994) Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens. Environ Health Perspect 102:117–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball LM, Kohan MJ, Claxton LD, Lewtas J (1984) Mutagenicity of derivatives and metabolites of 1-nitropyrene: activation by rat liver S9 and bacterial enzymes. Mutat Res 138:113–125

    Article  CAS  PubMed  Google Scholar 

  • Bamford HA, Bezabeh DZ, Schantz MM, Wise SA, Baker JE (2003) Determination and comparison of nitrated-polycyclic hydrocarbons measured in air and diesel particulate reference materials. Chemosphere 50:575–587

    Article  CAS  PubMed  Google Scholar 

  • Barker CC, Emmerson RG, Periam JD (1955) The monosubstitution of triphenylene. J Chem Soc:4482–4485

    Google Scholar 

  • Bezabeh DZ, Bamford HA, Schantz MM, Wise SA (2003) Determination of nitrated polycyclic aromatic hydrocarbons in diesel particulate-related standard reference materials by using gas chromatography/mass spectrometry with negative ion chemical ionization. Anal Bioanal Chem 375:381–388

    Article  CAS  PubMed  Google Scholar 

  • Chung SW, Chung HY, Toriba A, Kameda T, Tang N, Kizu R, Hayakawa K (2007) An environmental quinoid polycyclic aromatic hydrocarbon, acenaphthenequinone, modulates cyclooxygenase-2 expression through reactive oxygen species generation and nuclear factor kappa B activation in A549 cells. Toxicol Sci 95:348–355

    Article  CAS  PubMed  Google Scholar 

  • Ciccioli P, Cecinato A, Brancaleoni E, Frattoni M, Zacchei P, Miguel AH, de Castro Vasconcellos P (1996) Formation and transport of 2-nitrofluoranthene and 2-nitropyrene of photochemical origin in the troposphere. J Geophys Res 101:19567–19581

    Article  CAS  Google Scholar 

  • Cvrčková O, Ciganek M (2005) Photostability of polycyclic aromatic hydrocarbons (PAHs) and nitrated polycyclic aromatic hydrocarbons (NPAHs) in dichloromethane and isooctane solutions. Polycycl Aromat Compd 25:141–156

    Article  Google Scholar 

  • Cvrčková O, Ciganek M, Šimek Z (2006) Anthracene, chrysene, their nitro- and methyl-derivatives photostability in isooctane. Polycycl Aromat Compd 26:331–344

    Article  Google Scholar 

  • Cwiertny DM, Young MA, Grassian VH (2008) Chemistry and photochemistry of mineral dust aerosol. Annu Rev Phys Chem 59:27–51

    Article  CAS  PubMed  Google Scholar 

  • Demerjian KL, Schere KL, Peterson JT (1980) Theoretical estimates of actinic (spherically integrated) flux and photolytic rate constants of atmospheric species in the lower troposphere. Adv Environ Sci Technol 10:369–459

    CAS  Google Scholar 

  • Enya T, Suzuki H, Watanabe T, Hirayama T, Hisamatsu Y (1997) 3-nitrobenzanthrone, a powerful bacterial mutagen and suspected human carcinogen found in diesel exhaust and airborne particulates. Environ Sci Technol 31:2772–2776

    Article  CAS  Google Scholar 

  • Esteve W, Budzinski H, Villenave E (2004) Relative rate constants for the heterogeneous reactions of OH, NO2 and NO radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 1: PAHs adsorbed on 1-2 μm calibrated graphite particles. Atmos Environ 38:6063–6072

    Article  CAS  Google Scholar 

  • Falkovich AH, Schkolnik G, Ganor E, Rudich Y (2004) Adsorption of organic compounds pertinent to urban environments onto mineral dust particles. J Geophys Res Atmos 109:D02208

    Article  Google Scholar 

  • Fernández RJ (2002) Do humans create deserts? Trends Ecol Evol 17:6–7

    Article  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN Jr (2000) Chemistry of the upper and lower atmosphere. Academic Press, San Diego, CA

    Google Scholar 

  • Garcia H, Roth HD (2002) Generation and reactions of organic radical cations in zeolites. Chem Rev 102:3947–4007

    Article  CAS  PubMed  Google Scholar 

  • Gibson TL, Korsog PE, Wolff GT (1986) Evidence for the transformation of polycyclic organic matter in the atmosphere. Atmos Environ 20:1575–1578

    Article  CAS  Google Scholar 

  • Inazu K, Tsutsumi N, Aika KI, Hisamatsu Y (2000) SO2-enhanced nitration of fluoranthene and pyrene adsorbed on particulate matter in the heterogeneous reaction in the presence of NO2. Polycycl Aromat Compd 20:191–203

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (2013) Diesel and gasoline engine exhausts and some nitroarenes. In: IARC monographs on the evaluation of carcinogenic risks to humans, vol. 105. International Agency for Research on Cancer

    Google Scholar 

  • Ishii S, Hisamatsu Y, Inazu K, Aika K (2000) Ambient measurement of nitrotriphenylenes and possibility of nitrotriphenylene formation by atmospheric reaction. Environ Sci Technol 34:1893–1899

    Article  CAS  Google Scholar 

  • Ishii S, Hisamatsu Y, Inazu K, Aika K (2001) Environmental occurrence of nitrotriphenylene observed in airborne particulate matter. Chemosphere 44:681–690

    Article  CAS  PubMed  Google Scholar 

  • Kameda T, Inazu K, Hisamatsu Y, Takenaka N, Bandow H (2004) Determination of atmospheric nitro-polycyclic aromatic hydrocarbons and their precursors at a heavy traffic roadside and at a residential area in Osaka, Japan. Polycycl Aromat Compd 24:657–666

    Article  CAS  Google Scholar 

  • Kameda T, Inazu K, Hisamatsu Y, Takenaka N, Bandow H (2006) Isomer distribution of nitrotriphenylenes in airborne particles, diesel exhaust particles, and the products of gas-phase radical-initiated nitration of triphenylene. Atmos Environ 40:7742–7751

    Article  CAS  Google Scholar 

  • Kameda T, Akiyama A, Toriba A, Tachikawa C, Yoshita M, Tang N, Hayakawa K (2008) Evaluation of endocrine disrupting activities of monohydroxylated derivatives of 1-nitropyrene by yeast two-hybrid assay. J Health Sci 54:118–122

    Article  CAS  Google Scholar 

  • Kameda T, Nakayama Y, Goto T, Koyanagi T, Bandow H, Fujimori K, Toriba A, Tang N, Hayakawa K (2009) Photochemical degradation of selected nitro- and oxy-polycyclic aromatic hydrocarbons on airborne particles under simulated solar UV-irradiation. Airborne Particulates. Nova Science Publishers, New York, pp 291–307

    Google Scholar 

  • Kameda T, Akiyama A, Toriba A, Tang N, Hayakawa K (2010) Determination of particle-associated hydroxynitropyrenes with correction for chemical degradation on a quartz fibre filter during high volume air sampling. Int J Environ Anal Chem 90:976–987

    Article  CAS  Google Scholar 

  • Kameda T, Akiyama A, Toriba A, Tachikawa C, Yoshita M, Tang N, Hayakawa K (2011a) Mutagenicities and endocrine-disrupting activities of 1-hydroxy-2-nitropyrene and 1-hydroxy-5-nitropyrene. J Health Sci 57:372–377

    Article  CAS  Google Scholar 

  • Kameda T, Akiyama A, Toriba A, Tang N, Hayakawa K (2011b) Atmospheric formation of hydroxynitropyrenes from a photochemical reaction of particle-associated 1-nitropyrene. Environ Sci Technol 45:3325–3332

    Article  CAS  PubMed  Google Scholar 

  • Kameda T, Inazu K, Asano K, Murota M, Takenaka N, Sadanaga Y, Hisamatsu Y, Bandow H (2013) Prediction of rate constants for the gas phase reactions of triphenylene with OH and NO3 radicals using a relative rate method in CCl4 liquid phase-system. Chemosphere 90:766–771

    Article  CAS  PubMed  Google Scholar 

  • Kameda T, Azumi E, Fukushima A, Tang N, Matsuki A, Kamiya Y, Toriba A, Hayakawa K (2016) Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds. Sci Rep 6:24427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamens RM, Guo Z, Fulcher J, Bell D (1988) Influence of humidity, sunlight, and temperature on the daytime decay of polyaromatic hydrocarbons on atmospheric soot particles. Environ Sci Technol 22:103–108

    Article  CAS  PubMed  Google Scholar 

  • Kawanaka Y, Sakamoto K, Wang N, Yun S (2005) Determination of nitroarenes and 3-nitrobenzanthrone in atmospheric particulate matter by gas chromatography/tandem mass spectrometry with negative ion chemical ionization. Bunseki. Kagaku 54:685–691

    CAS  Google Scholar 

  • Laszlo P (1987) Chemical reaction on clays. Science 235:1473–1477

    Article  CAS  PubMed  Google Scholar 

  • Ma JZ, Liu YC, He H (2011) Heterogeneous reactions between NO2 and anthracene adsorbed on SiO2 and MgO. Atmos Environ 45:917–924

    Article  CAS  Google Scholar 

  • Manabe Y, Kinouchi T, Ohnishi Y (1985) Identification and quantification of highly mutagenic nitroacetoxypyrenes and nitrohydoroxypyrenes in diesel-exhaust particles. Mutat Res 158:3–18

    Article  CAS  PubMed  Google Scholar 

  • Miet K, Le Menach K, Flaud PM, Budzinski H, Villenave E (2009) Heterogeneous reactivity of pyrene and 1-nitropyrene with NO2: kinetics, product yields and mechanism. Atmos Environ 43:837–843

    Article  CAS  Google Scholar 

  • Nguyen ML, Bedjanian Y, Guilloteau A (2009) Kinetics of the reactions of soot surface-bound polycyclic aromatic hydrocarbons with NO2. J Atmos Chem 62:139–150

    Article  CAS  Google Scholar 

  • Parry EP (1963) An infrared study of pyridine adsorbed on acidic solids characterization of surface acidity. J Catal 2:371–379

    Article  CAS  Google Scholar 

  • Phousongphouang PT, Arey J (2003) Sources of the atmospheric contaminants, 2-nitrobenzanthrone and 3-nitrobenzanthrone. Atmos Environ 37:3189–3199

    Article  CAS  Google Scholar 

  • Radner F (1983) Nitration of polycyclic aromatic hydrocarbons with dinitrogen tetroxide. A simple and selective synthesis of mononitroderivatives. Acta Chem Scand B 37:65–67

    Article  Google Scholar 

  • Ramdahl T, Bjorseth A, Lokensgard DM, Pitts JN (1984) Nitration of polycyclic aromatic hydrocarbons adsorbed to different carriers in a fluidized-bed reactor. Chemosphere 13:527–534

    Article  CAS  Google Scholar 

  • Reisen F, Arey J (2005) Atmospheric reactions influence seasonal PAH and nitro-PAH concentrations in the Los Angeles basin. Environ Sci Technol 39:64–73

    Article  CAS  PubMed  Google Scholar 

  • Ridd JH (1991) The range of radical processes in nitration by nitric acid. Chem Soc Rev 20:149–165

    Article  CAS  Google Scholar 

  • Rosser PF, Ramachandran P, Sangaiah R, Austin RN, Gold A, Ball LM (1996) Role of O-acetyltransferase in activation of oxidised metabolites of the genotoxic environmental pollutant 1-nitropyrene. Mutat Res 369:209–220

    Article  CAS  PubMed  Google Scholar 

  • Salmeen IT, Pero AM, Zator R, Schuetzle D, Riley TL (1984) Ames assay chromatograms and the identification of mutagens in diesel particle extracts. Environ Sci Technol 18:375–382

    Article  CAS  PubMed  Google Scholar 

  • Sasaki J, Aschmann SM, Kwok ESC, Atkinson R, Arey J (1997) Products of the gas-phase OH and NO3 radical-initiated reactions of naphthalene. Environ Sci Technol 31:3173–3179

    Article  CAS  Google Scholar 

  • Schuetzle D (1983) Sampling of vehicle emissions for chemical analysis and biological testing. Environ Health Perspect 47:65–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuetzle D, Riley TL, Prater TJ, Harvey TM, Hunt DF (1982) Analysis of nitrated polycyclic aromatic-hydrocarbons in diesel particulates. Anal Chem 54:265–271

    Article  CAS  Google Scholar 

  • Schuetzle D, Jensen TE, Ball JC (1985) Polar polynuclear aromatic hydrocarbon derivatives in extracts of particulates: Biological characterization and techniques for chemical analysis. Environ Int 11:169–181

    Article  CAS  Google Scholar 

  • Shiraiwa M, Garland RM, Pöschl U (2009) Kinetic double-layer model of aerosol surface chemistry and gas-particle interactions (K2-SURF): degradation of polycyclic aromatic hydrocarbons exposed to O3, NO2, H2O, OH and NO3. Atmos Chem Phys 9:9571–9586

    Article  CAS  Google Scholar 

  • Shiri M, Zolfigol MA, Kruger HG, Tanbakouchian Z (2010) Advances in the application of N2O4/NO2 in organic reactions. Tetrahedron 66:9077–9106

    Article  CAS  Google Scholar 

  • Soma Y, Soma M (1989) Chemical reactions of organic compounds on clay surfaces. Environ Health Perspect 83:205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka TY, Chiba M (2006) A numerical study of the contributions of dust source regions to the global dust budget. Glob Planet Chang 52:88–104

    Article  Google Scholar 

  • Usher CR, Michel AE, Grassian VH (2003) Reactions on mineral dust. Chem Rev 103:4883–4939

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Hasegawa K, Kagaya S (2000) The nitration of pyrene adsorbed on silica particles by nitrogen dioxide. Chemosphere 41:1479–1484

    Article  CAS  PubMed  Google Scholar 

  • Warner SD, Farant JP, Butler IS (2004) Photochemical degradation of selected nitropolycyclic aromatic hydrocarbons in solution and adsorbed to solid particles. Chemosphere 54:1207–1215

    Article  CAS  PubMed  Google Scholar 

  • Yang DTC, Chou A, Chen E, Chiu LH (1994) Photodecomposition of environmental nitro-polycyclic aromatic hydrocarbons. Polycycl Aromat Compd 5:201–208

    Article  CAS  Google Scholar 

  • Yang XY, Igarashi K, Tang N, Lin J, Wang W, Kameda T, Toriba A, Hayakawa K (2010) Indirect- and direct-acting mutagenicity of diesel, coal and wood burning-derived particulates and contribution of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons. Mutat Res 695:29–34

    Article  CAS  PubMed  Google Scholar 

  • Zielinska B, Arey J, Atkinson R, Ramdahl T, Winer AM, Pitts JN Jr (1986) Reaction of dinitrogen pentoxide with fluoranthene. J Am Chem Soc 108:4126–4132

    Article  CAS  Google Scholar 

  • Zielinska B, Arey J, Atkinson R, Ramdahl T, Winer AM (1989) The nitroarenes of molecular weight 247 in ambient particulate samples collected in southern California. Atmos Environ 23:223–229

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Kameda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kameda, T. (2018). Atmospheric Reactions of PAH Derivatives: Formation and Degradation. In: Hayakawa, K. (eds) Polycyclic Aromatic Hydrocarbons. Springer, Singapore. https://doi.org/10.1007/978-981-10-6775-4_7

Download citation

Publish with us

Policies and ethics