Skip to main content

Surface Micro-/Nanostructuring Using Self-Assembly of Fine Particles

Micro and Nano Fabrication Technology

Part of the book series: Micro/Nano Technologies ((MNT,volume 1))

  • 315 Accesses

Abstract

This chapter describes the self-assembly of fine particles for micro-/nanostructuring and its applications. The self-assembly technique is based on aggregation, which is induced by a lateral capillary force (meniscus force) among particles in an evaporating suspension. Autonomously aggregated particles form a close-packed hexagonal arrangement. A specified template restricts the assembling particles to the desired pattern, producing microstructures of self-assembled particles on a substrate. Both spatially controlled wettability and microscale geometry are important candidates to be used in templates for the self-assembly of particles. These templates are fabricated by either micro-contact printing (μCP) of self-assembled monolayers (SAMs) or conventional lithography and etching; e.g., sub-micrometer silica and polystyrene particles can be structured in an array of linear or circular dot patterns of an order of tens of micrometers. The self-assembly of particles previously coated with functional materials can produce specific surface structures to be utilized in microdevices such as chemical sensors or biochips. Also, the surface asperities of arranged particles may increase the specific surface area to enhance the chemical reactions and improve the adhesion of cultured cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahn J, Son SJ, Min J (2013) The control of cell adhesion on a PMMA polymer surface consisting of nanopillar arrays. J Biotechnol 164:543–548

    Article  Google Scholar 

  • Alkan M, Tekin G, Namli H (2005) FTIR and zeta potential measurements of sepiolite treated with some organosilanes. Microporous Mesoporous Mater 84:75–83

    Article  Google Scholar 

  • Applegate R, Squier J, Vestad T (2004) Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars. Opt Express 12(19):4390–4398

    Article  Google Scholar 

  • Arslan G, Özmen M, Gündüz B, Zhang X, Ersöz M (2006) Surface modification of glass beads with an aminosilane monolayer. Turk J Chem 30:203–210

    Google Scholar 

  • Baur C, Bugacov A, Koel B (1998) Nanoparticle manipulation by mechanical pushing: underlying phenomena and real-time monitoring. Nanotechnology 9:360–364

    Article  Google Scholar 

  • Behrend CJ, Anker JN, McNaughton BH, Kopelman R (2005) Microrheology with modulated optical nanoprobes (MOONs). J Magn Magn Mater 293:663–670

    Article  Google Scholar 

  • Bouafsoun A, Helali S, Mebarek S, Zeiller C, Prigent AF, Othmane A, Kerkeni A, Jaffrézic-Renault N, Ponsonnet L (2007) Electrical probing of endothelial cell behavior on a fibronectin/polystyrene/thiol/gold electrode by Faradaic electrochemical impedance spectroscopy (EIS). Bioelectrochemistry 70:401–407

    Article  Google Scholar 

  • Cheung CL, Nikolic RJ, Reinhardt CE, Wang TF (2006) Fabrication of nanopillars by nanosphere lithography. Nanotechnology 17(5):1339–1343

    Article  Google Scholar 

  • Colson P, Cloots R, Henrist C (2011) Experimental design applied to spin coating of 2D colloidal crystal masks: a relevant method? Langmuir 27(21):12800–12806

    Article  Google Scholar 

  • Dahint R, Trileva E, Acunmana H, Konrad U, Zimmera M, Stadler V, Himmelhaus M (2007) Optically responsive nanoparticle layers for the label-free analysis of biospecific interactions in array format. Biosens Bioelectron 22:3174–3181

    Article  Google Scholar 

  • Demers LM, Mirkin CA (2001) Combinatorial templates generated by dip-pen nanolithography for the formation of two-dimensional particle arrays. Angew Chem Int Ed 40:3069–3071

    Article  Google Scholar 

  • Dimitrov A, Nagayama K (1996) Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 12(5):1303–1311

    Article  Google Scholar 

  • Duran C, Sato K, Hotta K, Watari K (2007) Covalently connected particles in green bodies fabricated by tape casting. J Am Ceram Soc 90(1):279–282

    Article  Google Scholar 

  • Fulda KU, Tieke B (1994) Langmuir films of monodisperse 0.5 μm spherical particles with hydrophobic core and a hydrophilic shell. Adv Mater 6(4):288–290

    Article  Google Scholar 

  • Fustin CA, Glasser G, Spiess HW, Jonas U (2004) Parameters influencing the templated growth of colloidal crystals on chemically patterned surfaces. Langmuir 20(21):9114–9123

    Article  Google Scholar 

  • Garno JC, Yang Y, Amro NA, Cruchon-Dupeyrat S, Chen S, Liu GY (2003) Precise positioning of nanoparticles on surfaces using scanning probe lithography. Nano Lett 3:389–395

    Article  Google Scholar 

  • Gu S, Kondo T, Konno M (2004) Preparation of silica–polystyrene core–shell particles up to micron sizes. J Colloid Interface Sci 272:314–320

    Article  Google Scholar 

  • Han S, Hao Z, Wang J, Luo Y (2005) Controllable two dimensional photonic crystal patterns fabricated by nanosphere lithography. J Vac Sci Technol 23(4):1585–1588

    Article  Google Scholar 

  • Hirono T, Torimitsu K, Kawana A, Fukuda J (1988) Recognition of artificial microstructures by sensory nerve fibers in culture. Brain Res 446:189–194

    Article  Google Scholar 

  • Junno T, Deppert K (1995) Controlled manipulation of nanoparticles with an atomic force microscope. Appl Phys Lett 66(26):3627–3629

    Article  Google Scholar 

  • Kanamori Y, Kaneko A, Moronuki N, Kubo T (2008) Self-assembly of fine particles on patterned wettability in dip coating and its scale extension with contact printing. J Adv Mech Des Syst Manuf 2:783–791

    Article  Google Scholar 

  • Kaneko A, Takeda I (2016) Textured surface of self-assembled particles as a scaffold for selective cell adhesion and growth. Int J Autom Technol 10(1):62–68

    Article  Google Scholar 

  • Kaneko A, Moronuki N, Shibata T, Kogiso J, Uchida K, Kubo T (2006) An application of dip-coating technique to fabrication of self-assembled microstructure on hydrophilic/hydrophobic-patterned substrate. In: 6th international conference of euspen, vol 2, pp 288–291, Baden bei Wien, Austria

    Google Scholar 

  • Kaneko A, Mogi M, Yamamura Y, Moronuki N (2006) Fabrication of self-assembled microstructure on using controlled liquid spreading on textured surface. JSPE publication series, vol 5, Springer, London, pp 191–196

    Google Scholar 

  • Kaneko A, Aruga D, Moronuki N, Kanamori Y (2009) Self-assembly of surface-modified fine particles on patterned substrate. In: 9th international conference of euspen, vol 2, pp 414–417, San Sebastian, Spain

    Google Scholar 

  • Kaneko A, Sugihara T, Murakami H, Takeda I, Tanaka Y, Moronuki N (2012) Fabrication of spatially-patterned cells using selective adhesion on pre-structured fine particles. Key Eng Mater 523–524:615–620

    Article  Google Scholar 

  • Kobayashi H, Moronuki N, Kaneko A (2008) Self-assembly of fine particles applied to the production of antireflective surfaces. J Korean Soc Precis Eng 9(1):25–29

    Google Scholar 

  • Kralchevski PA, Nagayama K (1994) Capillary forces between colloidal particles. Langmuir 10:23–36

    Article  Google Scholar 

  • Leclerc E, Sakai Y, Fujii T (2003) Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane). Biomed Microdevices 5:109–114

    Article  Google Scholar 

  • Li J, Xing R, Huang W, Han Y (2005) A self-assembly approach to fabricate the patterned colloidal crystals with a tunable structure. Colloids Surf A Physicochem Eng Asp 269:22–27

    Article  Google Scholar 

  • Masuda Y, Seo W, Koumoto K (2000) Arrangement of nanosized ceramic particles on self-assembled monolayers. Jpn J Appl Phys 39:4596–4600

    Article  Google Scholar 

  • Masuda Y, Itoh M, Yonezawa T, Koumoto K (2002) Low-dimensional arrangement of SiO2 particles. Langmuir 18(10):4155–4159

    Article  Google Scholar 

  • McNally H, Pingle M, Lee SW, Guo D, Bergstrom DE, Bashir R (2003) Self-assembly of micro- and nano-scale particles using bio-inspired events. Appl Surf Sci 214:109–119

    Article  Google Scholar 

  • Mihi A, Ocaña M, Míguez H (2006) Oriented colloidal-crystal thin films by spin-coating microspheres dispersed in volatile media. Adv Mater 18(17):2244–2249

    Article  Google Scholar 

  • Nishikawa H, Maenosono S, Yamaguchi Y, Okubo T (2003) Self-assembling process of colloidal particles into two-dimensional arrays induced by capillary immersion force: a simulation study with discrete element method. J Nanopart Res 5:103–110

    Article  Google Scholar 

  • Nishio M, Kaneko A, Moronuki N (2009) Complex assembly of fine particles by repeated dip-coating process. In: The 3rd intenational conference of asian society for precision engineering and nanotechnology, Kitakyushu, Japan

    Google Scholar 

  • Nshio M, Moronuki N, Tanaka Y, Kaneko A (2012) Self-assembly of functional particles on optical element for sensitivity improvement of bio-chemical sensor. Key Eng Mater 516:60–65

    Article  Google Scholar 

  • Paul JI (1984) Multiple fibronectin subunits and their post-translational modifications. J Biol Chem 259(21):13477–13487

    Google Scholar 

  • Paunov VN, Kralchevsky PA, Denkov ND, Nagayama K (1993) Lateral capillary forces between floating submillimeter particles. J Colloid Interface Sci 157(1):100–112

    Article  Google Scholar 

  • Perelaer J, Laat AWM, Hendriksa CE, Schubert US (2008) Inkjet-printed silver tracks: low temperature curing and thermal stability investigation. J Mater Chem 18:3209–3215

    Article  Google Scholar 

  • Ranella A, Barberoglou M, Bakogianni S, Fotakis C, Stratakis E (2010) Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater 6:2711–2720

    Article  Google Scholar 

  • Smith PJ, Shin DY, Stringer JE, Derby B, Reiset N (2006) Direct ink-jet printing and low temperature conversion of conductive silver patterns. J Mater Sci 41:4153–4158

    Article  Google Scholar 

  • Sugihara T, Kaneko A (2013) Self-patterning of PC12 cells on micro-structures of protein-modified particles. J Solid Mech Mater Eng 7(2):142–154

    Article  Google Scholar 

  • Takeda I, Kaneko A, Tanaka Y, Moronuki N (2012) Selective cell-adhesion on micro-structured fine particles. Key Eng Mater 516:130–135

    Article  Google Scholar 

  • Takeda I, Kawanabe M, Kaneko A (2015) Autonomous patterning of cells on microstructured fine particles. Mater Sci Eng C 50:173–178

    Article  Google Scholar 

  • Takeda I, Kawanabe M, Kaneko A (2016) An investigation of cell adhesion and growth on micro/nano-scale structured surface -self-assembled micro particles as a scaffold. Precis Eng 43:294–298

    Article  Google Scholar 

  • Torimitsu K, Kawana A (1990) Selective growth of sensory nerve fibers on metal oxide pattern in culture. Dev Brain Res 51(1):128–131

    Article  Google Scholar 

  • Tsukagoshi T, Kondo Y, Yoshino N (2007) Protein adsorption on polymer-modified silica particle surface. Colloids Surf B Biointerfaces 54:101–107

    Article  Google Scholar 

  • Tsuruma A, Tanaka M, Yamamoto S, Fukushima N, Yabu H, Shimomura M (2006) Topographical control of neurite extension on stripe-patterned polymer films. Colloids Surf A 284–285:470–474

    Article  Google Scholar 

  • Velikov KP, Moroz A, Blaaderen A (2002) Photonic crystals of core-shell colloidal particles. Appl Phys Lett 80:49–51

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1997) Extending microcontact printing as a microlithographic technique. Langmuir 13(7):2059–2067

    Article  Google Scholar 

  • Xuefeng W, Christian AO, Qinghua L, Jun H (2008) Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene. Biomaterials 29(13):2049–2059

    Article  Google Scholar 

  • Ye YH, Badilescu S, Truong VV (2001) Self-assembly of colloidal spheres on patterned substrates. Appl Phys Lett 79:872–874

    Article  Google Scholar 

  • Yellen BB, Friedman G (2004) Programmable assembly of colloidal particles using magnetic microwell templates. Langmuir 20:2553–2559

    Article  Google Scholar 

  • Yin Y, Lu Y, Gates B, Xia Y (2001) Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J Am Chem Soc 123(36):8718–8729

    Article  Google Scholar 

  • Yonezawa T, Genda H, Koumoto K (2002) Cationic silver nanoparticles dispersed in water prepared from insoluble salts. Chem Lett 32(2):1172–1173

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arata Kaneko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kaneko, A. (2018). Surface Micro-/Nanostructuring Using Self-Assembly of Fine Particles. In: Yan, J. (eds) Micro and Nano Fabrication Technology. Micro/Nano Technologies, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-10-6588-0_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6588-0_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6588-0

  • Online ISBN: 978-981-10-6588-0

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Surface Micro-/Nanostructuring Using Self-Assembly of Fine Particles
    Published:
    17 April 2018

    DOI: https://doi.org/10.1007/978-981-10-6588-0_24-2

  2. Original

    Surface Micro-/Nanostructuring Using Self-Assembly of Fine Particles
    Published:
    10 February 2018

    DOI: https://doi.org/10.1007/978-981-10-6588-0_24-1