Skip to main content

Cortical–Subcortical Interactions in the Pathophysiology of Depression

  • Chapter
  • First Online:
Understanding Depression
  • 2356 Accesses

Abstract

Depression is not the result of a single brain region or specific neurotransmitter system dysfunction but is a multidimensional disorder affecting functionally integrated cortical–subcortical pathways to regulate emotion. Depression has been proposed to be the result of dysfunctional coordination of cortical–subcortical pathways. Magnetic resonance imaging (MRI) studies have revealed structural brain abnormalities associated with major depressive disorder (MDD) in the limbic system and prefrontal regions, which are primarily involved in emotional processing and regulation. The most robust finding from volumetric MRI studies assessing patients with MDD in comparison with healthy controls is the significant gray matter volume reduction within the prefrontal cortex and limbic areas in patients with MDD. Interactions among the prefrontal cortex and ventral striatum, amygdala, and dorsal raphe nucleus have been implicated in the pathophysiology of MDD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • aan het Rot M, Mathew SJ, Charney DS. Neurobiological mechanisms in major depressive disorder. Can Med Assoc J. 2009;180:305–13.

    Article  Google Scholar 

  • Admon R, Pizzagalli DA. Dysfunctional reward processing in depression. Curr Opin Psychol. 2015;4:114–8.

    Article  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, prefrontal and limbic functions. Prog Brain Res. 1990;85:119–46.

    Article  CAS  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci. 1986;9:357–81.

    Article  CAS  Google Scholar 

  • Atkinson L, Sankar A, Adams TM, Fu CH. Recent advances in neuroimaging of mood disorders: structural and functional neural correlates of depression, changes with therapy, and potential for clinical biomarkers. Curr Treat Option Psychiatry. 2014;1:278–93.

    Article  Google Scholar 

  • Beauregard M, Lévesque J, Bourgouin P. Neural correlates of conscious self-regulation of emotion. J Neurosci. 2001;21(18):RC165.

    Article  CAS  Google Scholar 

  • Bora E, Fornito A, Pantelis C, Yücel M. Gray matter abnormalities in major depressive disorder: a meta-analysis of voxel based morphometry studies. J Affect Disord. 2012a;138(1–2):9–18.

    Article  Google Scholar 

  • Bora E, Harrison BJ, Davey CG, et al. Meta analysis of volumetric abnormalities in cortico-striatal-pallidal-thalamic circuits in major depressive disorder. Psychol Med. 2012b;42:671–81.

    Article  CAS  Google Scholar 

  • Bracht T, Doidge AN, Keedwell PA, Jones DK. Hedonic tone is associated with left supero-lateral medial forebrain bundle microstructure. Psychol Med. 2015a;45:865–74.

    Article  CAS  Google Scholar 

  • Bracht T, Horn H, Strik W, et al. White matter microstructure alterations of the medial forebrain bundle in melancholic depression. J Affect Disord. 2014;155:186–93.

    Article  Google Scholar 

  • Bracht T, Linden D, Keedwell P. A review of white matter microstructure alterations of pathways of the reward circuit in depression. J. Affect. Disord. 2015b;187:45–53.

    Article  Google Scholar 

  • Bronstein YL, Cummings JL. Neurochemistry of frontal subcortical circuits. In: Lichter D, Cummings JL, editors. Frontal subcortical circuits in psychiatric and neurological disorders. New York: Guilford Press; 2001. p. 59–91.

    Google Scholar 

  • Challis C, Berton O. Top-down control of serotonin systems by the prefrontal cortex: a path towards restored socioemotional functionin depression. ACS Chem Neurosci. 2015;6:1040–54.

    Article  CAS  Google Scholar 

  • Cole J, Chaddock CA, Farmer AE, et al. White matter abnormalities and illness severity in major depressive disorder. Br J Psychiatry. 2012;201:33–9.

    Article  Google Scholar 

  • Cole J, Costafreda SG, McGuffin P, Fu CH. Hippocampal atrophy in first episode depression: a meta-analysis of magnetic resonance imaging studies. J Affect Disord. 2011;134:483–7.

    Article  Google Scholar 

  • Delvecchio G, Fossati P, Boyer P, et al. Common and distinct neural correlates of emotional processing in bipolar disorder and major depressive disorder: a voxel-based meta-analysis of functional magnetic resonance imaging studies. Eur Neuropsychopharmacol. 2012;22(2):100–13.

    Article  CAS  Google Scholar 

  • Dichter GS, Gibbs D, Smoski MJ. A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder. J. Affect.Disord. 2015;172:8–17.

    Article  Google Scholar 

  • Du MY, Wu QZ, Yue Q, et al. Voxelwise meta analysis of gray matter reduction in major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;36:11–6.

    Article  Google Scholar 

  • Dutta A, McKie S, Deakin JFW. Resting state networks in major depressive disorder. Psychiatry Res. 2014;224:139–51.

    Article  Google Scholar 

  • Fava M, Kendler KS. Major depressive disorder. Neuron. 2000;28:335–41.

    Article  CAS  Google Scholar 

  • Furman DJ, Hamilton JP, Gotlib IH. Frontostriatal functional connectivity in major depressive disorder. Biol Mood Anxiety Disord. 2011;8(1):11.

    Article  Google Scholar 

  • Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35:4–26.

    Article  Google Scholar 

  • Heller AS. Cortical-subcortical interactions in depression: from animal models to human psychopathology. Front Syst Neurosci. 2016;10:20.

    Article  Google Scholar 

  • Heshmati M, Russo SJ. Anhedonia and the brain reward circuitry in depression. Curr Behav Neurosci Rep. 2015;2:146–53.

    Article  Google Scholar 

  • Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiat. 2015;72:603–11.

    Article  Google Scholar 

  • Kempton MJ, Salvador Z, Munafò MR, et al. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry. 2011;68(7):675–90.

    Article  Google Scholar 

  • Kendler KS, Thornton LM, Gardner CO. Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression. Am J Psychiatry. 2001;158:582–6.

    Article  CAS  Google Scholar 

  • Kong L, Wu F, Tang Y, et al. Frontal-subcortical volumetric deficits in single episode, medication-naïve depressed patients and the effects of 8 weeks fluoxetine treatment: a VBM-DARTEL study. PLoS One. 2014;9(1):e79055.

    Article  Google Scholar 

  • Krishnan V, Nestler EJ. Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry. 2010;167:1305–20.

    Article  Google Scholar 

  • Lai CH, Wu YT. Frontal-insula gray matter deficits in first-episode medication-naïve patients with major depressive disorder. J Affect Disord. 2014;160:74–9.

    Article  Google Scholar 

  • Leung KK, Lee TM, Wong MM, et al. Neural correlates of attention biases of people with major depressive disorder: a voxel-based morphometric study. Psychol Med. 2009;39:1097–106.

    Article  Google Scholar 

  • Lévesque J, Eugène F, Joanette Y, et al. Neural circuitry underlying voluntary suppression of sadness. Biol Psychiatry. 2003;53(6):502–10.

    Article  Google Scholar 

  • Liao Y, Huang X, Wu Q, et al. Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. J Psychiatry Neurosci. 2013;38:49–56.

    Article  Google Scholar 

  • Lorenzetti V, Allen NB, Fornito A, Yücel M. Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J Affect Disord. 2009;117:1–17.

    Article  Google Scholar 

  • Marchetti I, Koster EHW, Sonuga-Barke EJ, DeRaedt R. The default mode network and recurrent depression: a neurobiological model of cognitive risk factors. Neuropsychol Rev. 2012;22:229–51.

    Article  Google Scholar 

  • Mayberg HS. Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci. 1997;9:471–81.

    Article  CAS  Google Scholar 

  • McEwen BS. Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann N Y Acad Sci. 2001;933:265–77.

    Article  CAS  Google Scholar 

  • McEwen BS. The ever-changing brain: cellular and molecular mechanisms for the effects of stressful experiences. Dev Neurobiol. 2012;72:878–90.

    Article  CAS  Google Scholar 

  • McGeer PL, McGeer EG. Neurotransmitters and their receptors in the basal ganglia. Adv Neurol. 1993;60:93–101.

    CAS  PubMed  Google Scholar 

  • Mega MS, Cummings JL. Frontal subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci. 1994;6:358–70.

    Article  CAS  Google Scholar 

  • Mesulam MM. Behavioral neuroanatomy. Large scale networks, association cortex, frontal syndromes, the limbic system and hemispheric specializations. In: Mesulam MM, editor. Principles of behavioral and cognitive neurology. New York: Oxford University Press; 2000. p. 1–120.

    Google Scholar 

  • Northoff G. Spatiotemporal psychopathology I: no rest for the brain’s resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms. J Affect Disord. 2016;190:854–66.

    Article  Google Scholar 

  • Northoff G, Wiebking C, Feinberg T, Panksepp J. The “resting- state hypothesis” of major depressive disorder-a translational subcortical- cortical framework for a system disorder. Neurosci Biobehav Rev. 2011;35:1929–45.

    Article  Google Scholar 

  • Ongür D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 2000;10(3):206–19.

    Article  Google Scholar 

  • Parent A, Pare D, Smith Y, Steriade M. Basal forebrain cholinergic and noncholinergic projections to the thalamus and brainstem in cats and monkeys. J Comp Neurol. 1988;277:281–301.

    Article  CAS  Google Scholar 

  • Phillips ML, Chase HW, Sheline YI, et al. Identifying predictors, moderators and mediators of antidepressant response in major depressive disorder: neuroimaging approaches. Am J Psychiatry. 2015;172:124–38.

    Article  Google Scholar 

  • Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry. 2003;54(5):504–14.

    Article  Google Scholar 

  • Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry. 2008;13(9):829, 833–57.

    Google Scholar 

  • Price JL. Comparative aspects of amygdala connectivity. Ann N Y Acad Sci. 2003;985:50–8.

    Article  Google Scholar 

  • Rajkowska G. Postmortem studies in mood disorders indicate altered number of neurons and glial cells. Biol Psychiatry. 2000;48:766–77.

    Article  CAS  Google Scholar 

  • Sacher J, Neumann J, Fünfstück T, et al. Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. J Affect Disord. 2012;140:142–8.

    Article  Google Scholar 

  • Sahay A, Hen R. Adult hippocampal neurogenesis in depression. Nat Neurosci. 2007;10:1110–5.

    Article  CAS  Google Scholar 

  • Salvadore G, Nugent AC, Lemaitre H, et al. Prefrontal cortical abnormalities in currently depressed versus currently remitted patients with major depressive disorder. NeuroImage. 2011;54:2643–51.

    Article  Google Scholar 

  • Sheline YI, Price JL, Yan Z, Mintun MA. Resting- state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci U S A. 2010;107:11020–5.

    Article  CAS  Google Scholar 

  • Singh MK, Gotlib IH. The neuroscience of depression: implications for assessment and intervention. Behav Res Ther. 2014;62:60–73.

    Article  Google Scholar 

  • Starkstein SE, Robinson RG, editors. Depression in neurologic diseases. Baltimore: Hopkins University Press; 1993.

    Google Scholar 

  • Tekin S, Cummings JL. Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res. 2002;53(2):647–54.

    Article  Google Scholar 

  • Vasic N, Walter H, Hose A, Wolf RC. Gray matter reduction associated with psychopathology and cognitive dysfunction in unipolar depression: a voxel based morphometry study. J Affect Disord. 2008;109:107–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hyuk Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lee, K.S., Lee, S.H. (2018). Cortical–Subcortical Interactions in the Pathophysiology of Depression. In: Kim, YK. (eds) Understanding Depression . Springer, Singapore. https://doi.org/10.1007/978-981-10-6580-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6580-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6579-8

  • Online ISBN: 978-981-10-6580-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics