Skip to main content

An Efficient Design of Left Shifter in Quantum Cellular Automata

  • Conference paper
  • First Online:
Computational Intelligence, Communications, and Business Analytics (CICBA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 776))

  • 1391 Accesses

Abstract

Quantum-dot Cellular Automata (QCA) is one of the rapidly growing nano-electronic computing technology. QCA is based on electron presents in quantum dots. QCA technology have features on high density, low power and smallest design compare to the other technologies. This paper proposed the basic paradigm of an efficient design of a 4-bit binary Logical Left Shifter circuit for single shift as well as multiple shifts. Due to inherent nature, QCA has been utilized in this paper to achieve low power faster circuit for proposed design. These shifter circuits are useful in floating point processing systems, particularly very useful for mantissa multiplication technique. All the designs are implemented with QCADesigner tool. The accuracy is verified comparing theoretical values and corresponding simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)

    Article  Google Scholar 

  2. Lakshmi, S.K., Athisha, G.: Efficient design of logical structures and functions using nanotechnology based quantum dot cellular automata design. Int. J. Comput. Appl. 3, 5 (2010)

    Google Scholar 

  3. Lakshmil, S.K., Athishi, G., Karthikeyan, M., Ganesh, C.: Design of subtractor using nanotechnology based QCA. In: Communication Control and Computing Technologies, pp. 384–388 (2010)

    Google Scholar 

  4. Orlov, A.O., Amlani, I., Toth, G., Lent, C.S., Bernstein, G.H., Snider, G.L.: Experimental demonstration of a binary wire for quantum-dot cellular automata. Appl. Phys. Lett. 74(19), 2875–2877 (1999)

    Article  Google Scholar 

  5. Niemier, M.T., Kogge, P.M.: Logic in wire: using quantum dots to implement a microprocessor. Electron. Circ. Syst. 3, 1211–1215 (1999)

    Google Scholar 

  6. Das, J.C., De, D.: Novel low power reversible binary incrementer design using quantum-dot cellular automata. Microprocess. Microsyst. 42, 10–23 (2016)

    Article  Google Scholar 

  7. Agrawal, P., Sinha, S.R.P., Wairya, S.U.B.O.D.H.: Quantum dot cellular automata based parity generator and detector: a review. Int. J. Electron. Commun. Eng. 5, 3 (2016)

    Google Scholar 

  8. Navi, K., Sayedsalehi, S., Farazkish, R., Azghadi, M.R.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theoret. Nanosci. 7(8), 1546–1553 (2010)

    Article  Google Scholar 

  9. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)

    Article  Google Scholar 

  10. Vetteth, A., Walus, K., Dimitrov, V.S., Jullien, G.A.: Quantum-dot cellular automata carry-look-ahead adder and barrel shifter. In: IEEE Emerging Telecommunications Technologies Conference, pp. 2–4 (2002)

    Google Scholar 

  11. Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 443–450 (2004)

    Article  Google Scholar 

  12. Porod, W.: Quantum-dot devices and quantum-dot cellular automata. Int. J. Bifurcat. Chaos 7(10), 2199–2218 (1997)

    Article  MATH  Google Scholar 

  13. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  Google Scholar 

  14. Khan, A., Chakrabarty, R.: Novel design of high polarized inverter using minimum number of rotated cells and related kink energy calculation in quantum dot cellular automata. Int. J. Soft Comput. Eng. (IJSCE) 3(1), 165–169 (2013)

    Google Scholar 

  15. De, D., Purkayastha, T., Chattopadhyay, T.: Design of QCA based programmable logic array using decoder. Microelectron. J. 55, 92–107 (2016)

    Article  Google Scholar 

  16. Das, J.C., Purkayastha, T., De, D.: Reversible nanorouter using QCA for nanocommunication. Nanomat. Energy 5(1), 28–42 (2016)

    Article  Google Scholar 

  17. Cho, H., Swartzlander Jr., E.E.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Das, J.C., De, D.: Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst. Technol. 23(9), 4155–4168 (2016). https://doi.org/10.1007/s00542-016-3085-y

  19. Modi, S., Tomar, A.S.: Logic gate implementations for quantum dot cellular automata. In: Computational Intelligence and Communication Networks (CICN), pp. 565–567 (2010)

    Google Scholar 

  20. Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G.H., Porod, W.: Majority logic gate for magnetic quantum-dot cellular automata. Science 311(5758), 205–208 (2006)

    Article  Google Scholar 

  21. Hast, H., Khorbotly, S., Tougaw, D.: A signal distribution network for sequential quantum-dot cellular automata systems. IEEE Trans. Nanotechnol. 14(4), 648–656 (2015)

    Article  Google Scholar 

  22. Rasala, E.J., Young, C.J.: Data general corporation. Floating point data processing system. U.S. Patent No. 4,208,722 (1980)

    Google Scholar 

  23. Amdahl, G., Clements, M., Topham, L.: Right and left shifter and method in a data processing system, U.S. Patent No. 3,790,960 (1974)

    Google Scholar 

  24. Das, J.C., De, D.: Optimized multiplexer design and simulation using quantum dot-cellular automata. Indian J. Pure Appl. Phys. (IJPAP) 54(12), 802–811 (2016)

    Google Scholar 

  25. Das, J.C., De, D.: Reversible binary to grey and grey to binary code converter using QCA. IETE J. Res. 61(3), 223–229 (2015)

    Article  Google Scholar 

  26. Das, J.C., De, D.: Quantum dot-cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Front. Inf. Technol. Electron. Eng. 17(3), 224–236 (2016)

    Google Scholar 

Download references

Acknowledgement

Authors are grateful to TEQIP-II, WB for providing financial assistance to completed the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Das, B., De, D., Das, J.C., Sarkar, S. (2017). An Efficient Design of Left Shifter in Quantum Cellular Automata. In: Mandal, J., Dutta, P., Mukhopadhyay, S. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2017. Communications in Computer and Information Science, vol 776. Springer, Singapore. https://doi.org/10.1007/978-981-10-6430-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6430-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6429-6

  • Online ISBN: 978-981-10-6430-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics