Skip to main content

PCA Based Face Recognition on Curvelet Compressive Measurements

  • Conference paper
  • First Online:
Computational Intelligence, Communications, and Business Analytics (CICBA 2017)

Abstract

This paper proposes an integrated framework to recognize face images using compressive sensing (CS), curvelet transform (CT), and Principal Component Analysis (PCA). Here CS is used to offer the compressive measurements of image which leads to reduced storage space and computational time complexity. Facial images are rich with the lines, the edges, curvatures and the boundaries. CT has been used to represent the face images in compact form playing dual role, (i) sparse representation to offer compressive measurements on detailed subband and (ii) enhancement of face images by reconstruction. PCA is then applied on enhanced images to select important features for recognition. The performance of the proposed method is evaluated by employing K-fold cross validation technique, collaborative representation based classifier with regularized least square (CRC_RLS), neural network (NN), Naive Bayes (NB) and Support Vector Machine (SVM). Extensive experiments on publicly available ORL face database is conducted to substantiate our claim.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  2. Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: a survey. Proc. IEEE 83(5), 705–741 (1995)

    Article  Google Scholar 

  3. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 35(4), 399–458 (2003)

    Article  Google Scholar 

  4. Yang, M., Zhang, l.: Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. In: Proceedings of the 11th European Conference on Computer Vision, pp. 448–461 (2010)

    Google Scholar 

  5. Huang, J., Huang, X., Metaxas, D.: Simultaneous image transformation and sparse representation recovery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  6. Zhou, Z., Wagner, A., Mobahi, H., Wright, J., Ma, Y.: Face recognition with contiguous occlusion using Markov random fields. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1050–1057 (2009)

    Google Scholar 

  7. Wagner, A., Wright, J., Ganesh, A., Zhou, Z., Ma, Y.: Towards a practical face recognition system: robust registration and illumination by sparse representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 597–604 (2009)

    Google Scholar 

  8. Yang, M., Zhang, L., Feng, X., Zhang, D.: Fisher discrimination dictionary learning for sparse representation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 543–550 (2011)

    Google Scholar 

  9. Shiau, Y.-H., Chen, C.-C.: A sparse representation method with maximum probability of partial ranking for face recognition. In: Proceedings of the IEEE International Conference on Image Processing, pp. 1445–1448 (2012)

    Google Scholar 

  10. Wang, J., Lu, C., Wang, M., Hu, X.: Robust face recognition via adaptive sparse representation. IEEE Trans. Cybern. 44(12), 2368–2378 (2014)

    Article  Google Scholar 

  11. Baraniuk, R.G.: Compressive sensing. IEEE Sign. Process. Mag., July 2007

    Google Scholar 

  12. Cands, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Sign. Process. Mag., March 2008

    Google Scholar 

  13. Candes, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Prob. 23, 969–972 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theor. 52(2), 489–492 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, Z., Dongarra, J.: Condition numbers of Gaussian random matrices. SIAM J. Matrix Anal. Appl. 27(3), 603–620 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Candes, E., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theor. 52(12), 5406–5425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Candes, E., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted l1 minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics Publishing, Bristol (1998)

    Book  MATH  Google Scholar 

  20. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Mun, S., Fowler, J.E.: Block compressed sensing of images using directional transforms. In: Proceedings of the International Conference on Image Processing, pp. 3021–3024 (2009)

    Google Scholar 

  22. Candes, E.J., Demanet, L., Donoho, D.L., Ying, L.: Fast discrete curvelet transform. SIAM J. Multiscale Model. Simul. 5(3), 861–899 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition? In: Proceedings of the IEEE International Conference on Computer Vision, pp. 471–478 (2011)

    Google Scholar 

  24. Zhang, Z., Xu, Y., Yang, J., Li, X., Zhang, D.: A survey of sparse representation: algorithms and applications. IEEE Access 3, 490–530 (2015)

    Article  Google Scholar 

  25. Wang, Y., Wang, C., Liang, L.: Sparse representation theory and its application for face recognition. Int. J. Smart Sensing Intell. Syst. 8(1) (2015)

    Google Scholar 

  26. http://www.cl.cam.ac.uk/Research/DTG/attarchive

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suparna Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Biswas, S., Sil, J., Maity, S.P. (2017). PCA Based Face Recognition on Curvelet Compressive Measurements. In: Mandal, J., Dutta, P., Mukhopadhyay, S. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2017. Communications in Computer and Information Science, vol 775. Springer, Singapore. https://doi.org/10.1007/978-981-10-6427-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6427-2_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6426-5

  • Online ISBN: 978-981-10-6427-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics