Skip to main content

Nitrogen Metabolism

  • Chapter
  • First Online:
Cyanidioschyzon merolae
  • 734 Accesses

Abstract

Cyanidioschyzon merolae is able to grow on ammonium, as well as nitrate, as the sole nitrogen source; however, this alga does not have a canonical nitrite reductase (NiR). Interestingly, a sulfite reductase-like protein (SiRB) functions as the NiR in this alga. Unlike the genomes of higher plants, the C. merolae genome encodes only one glutamine synthetase (GS), which is localized in the cytosol. Thus, the nitrogen assimilation pathway in C. merolae is complex and unique, since the intermediate metabolites of nitrogen assimilation must translocate back and forth between the chloroplast and the cytosol during the nitrogen assimilation process. Using genetic and molecular biology approaches, we found that the MYB-type transcription factor, MYB1, is the central regulator of nitrogen assimilation. Nitrogen depletion-induced transcripts of nitrogen assimilation genes were completely absent from the MYB1-knockout strain. Furthermore, direct interactions between MYB1 and the promoter regions of nitrogen assimilation genes were observed in vivo and in vitro. Although MYB1-dependent transcripts of nitrogen assimilation genes were detected in nitrate-grown cells, they disappeared upon the addition of a preferred nitrogen source such as ammonium or glutamine. These findings suggested that MYB1 mediates the nitrogen catabolite repression-sensitive transcription of nitrogen assimilation genes in response to nitrogen status in C. merolae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arcondeguy T, Jack R, Merrick M (2001) PII signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 65:80–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692

    Article  CAS  PubMed  Google Scholar 

  • Bi YM, Zhang Y, Signorelli T, Zhao R, Zhu T, Rothstein S (2005) Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. Plant J 44:680–692

    Article  CAS  PubMed  Google Scholar 

  • Cooper TG (2002) Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev 26:223–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crespo JL, Díaz-Troya S, Florencio FJ (2005) Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol 139:1736–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imamura S, Kanesaki Y, Ohnuma M, Inouye T, Sekine Y, Fujiwara T, Kuroiwa T, Tanaka K (2009) R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae. Proc Natl Acad Sci U S A 106:12548–12553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imamura S, Ishiwata A, Watanabe S, Yoshikawa H, Tanaka K (2013) Expression of budding yeast FKBP12 confers rapamycin susceptibility to the unicellular red alga Cyanidioschyzon merolae. Biochem Biophys Res Commun 439:264–269

    Google Scholar 

  • Imamura S, Terashita M, Ohnuma M, Maruyama S, Minoda A, Weber AP, Inouye T, Sekine Y, Fujita Y, Omata T, Tanaka K (2010) Nitrate assimilatory genes and their transcriptional regulation in a unicellular red alga Cyanidioschyzon merolae: genetic evidence for nitrite reduction by a sulfite reductase-like enzyme. Plant Cell Physiol 51:707–717

    Article  CAS  PubMed  Google Scholar 

  • Imamura S, Kawase Y, Kobayashi I, Sone T, Era A, Miyagishima SY, Shimojima M, Ohta H, Tanaka K (2015) Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae. Plant Mol Biol 89:309–318

    Article  CAS  PubMed  Google Scholar 

  • Ishiyama K, Inoue E, Watanabe-Takahashi A, Obara M, Yamaya T, Takahashi H (2004) Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. J Biol Chem 279:16598–16605

    Google Scholar 

  • Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:569–593

    Article  CAS  PubMed  Google Scholar 

  • Linka M, Weber AP (2005) Shuffling ammonia between mitochondria and plastids during photorespiration. Trends Plant Sci 10:461–465

    Article  CAS  PubMed  Google Scholar 

  • Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama M, Akashi T, Hase T (2000) Plant sulfite reductase: molecular structure, catalytic function and interaction with ferredoxin. J Inorg Biochem 82:27–32

    Article  CAS  PubMed  Google Scholar 

  • Ohashi Y, Shi W, Takatani N, Aichi M, Maeda S, Watanabe S, Yoshikawa H, Omata T (2012) Regulation of nitrate assimilation in cyanobacteria. J Exp Bot 62:1411–1424

    Article  Google Scholar 

  • Osanai T, Tanaka K (2007) Keeping in touch with PII: PII-interacting proteins in unicellular cyanobacteria. Plant Cell Physiol 48:908–914

    Article  CAS  PubMed  Google Scholar 

  • Rai R, Tate JJ, Shanmuganatham K, Howe MM, Nelson D, Cooper TG (2015) Nuclear Gln3 import is regulated by nitrogen catabolite repression whereas export is specifically regulated by glutamine. Genetics 201:989–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekine K, Sakakibara Y, Hase T, Sato N (2009) A novel variant of ferredoxin-dependent sulfite reductase having preferred substrate specificity for nitrite in the unicellular red alga Cyanidioschyzon merolae. Biochem J 423:91–98

    Article  CAS  PubMed  Google Scholar 

  • Sekine K, Moriyama T, Kim J, Hase T, Sato N (2017) Characterization of two ferredoxin-dependent sulfite reductases having different substrate specificity in the red alga Cyanidioschyzon merolae. J Biochem 162:37–43

    Google Scholar 

  • Shimobayashi M, Hall MN (2016) Multiple amino acid sensing inputs to mTORC1. Cell Res 26:7–20

    Article  CAS  PubMed  Google Scholar 

  • Suzuki I, Kikuchi H, Nakanishi S, Fujita Y, Sugiyama T, Omata T (1995) A novel nitrite reductase gene from the cyanobacterium Plectonema boryanum. J Bacteriol 177:6137–6143

    Google Scholar 

  • Terashita M, Maruyama S, Tanaka K (2006) Cytoplasmic localization of the single glutamine synthetase in a unicellular red alga, Cyanidioschyzon merolae 10D. Biosci Biotechnol Biochem 70:2313–2315

    Article  CAS  PubMed  Google Scholar 

  • Virgilio CD, Loewith R (2006) The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38:1476–1481

    Article  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S (2014) Transcription factors involved in controlling the expression of nitrate reductase genes in higher plants. Plant Sci 229:167–171

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sousuke Imamura or Kan Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Imamura, S., Tanaka, K. (2017). Nitrogen Metabolism. In: Kuroiwa, T., et al. Cyanidioschyzon merolae. Springer, Singapore. https://doi.org/10.1007/978-981-10-6101-1_18

Download citation

Publish with us

Policies and ethics