Skip to main content

Updates on Stimuli-Responsive Polymers: Synthesis Approaches and Features

  • Chapter
  • First Online:
Polymer Gels

Abstract

Stimuli-responsive polymers (SRPs) are a type of smart materials which can demonstrate noticeable changes in their characteristics as a response to their exposure to some environmental stimuli variations. The environmental stimuli could be physical (e.g., electric field, ionic strength, magnetic field, mechanical stress, pressure, radiation, and temperature), chemical (e.g., specific ions and chemical agents), or biochemical (e.g., enzyme substrates and ligands). Recently, SRPs were used in numerous applications including diagnostics, drug delivery systems, biosensors, regenerative medicine, and stem cells. This chapter illustrates the different categories of SRPs and highlights some of their synthesis approaches, unique features, major development, their different structures, and classifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander C, Shakesheff KM (2006) Responsive polymers at the biology/materials science interface. Adv Mater 18:3321–3328

    Article  CAS  Google Scholar 

  • Bae Y, Fukushima S, Harada A, Kataoka K (2003) Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed 42:4640–4643

    Article  CAS  Google Scholar 

  • Bae Y, Kataoka K (2009) Intelligent polymeric micelles from functional poly (ethylene glycol)-poly (amino acid) block copolymers. Adv Drug Deliv Rev 61:768–784

    Article  CAS  PubMed  Google Scholar 

  • Bajpai A, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118

    Article  CAS  Google Scholar 

  • Bertin A (2012) Emergence of polymer stereocomplexes for biomedical applications. Macromol Chem Phys 213:2329–2352

    Article  CAS  Google Scholar 

  • Cascone MG, Sim B, Sandra D (1995) Blends of synthetic and natural polymers as drug delivery systems for growth hormone. Biomaterials 16:569–574

    Article  CAS  PubMed  Google Scholar 

  • Censi R, Fieten PJ, di Martino P, Hennink WE, Vermonden T (2010) In situ forming hydrogels by tandem thermal gelling and Michael addition reaction between thermosensitive triblock copolymers and thiolated hyaluronan. Macromolecules 43:5771–5778

    Article  CAS  Google Scholar 

  • Chen T, Embree HD, Brown EM, Taylor MM, Payne GF (2003) Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials 24:2831–2841

    Article  CAS  PubMed  Google Scholar 

  • Chorny M, Fishbein I, Forbes S, Alferiev I (2011) Magnetic nanoparticles for targeted vascular delivery. IUBMB Life 63:613–620

    Article  CAS  PubMed  Google Scholar 

  • Chung HJ, Lee Y, Park TG (2008) Thermo-sensitive and biodegradable hydrogels based on stere complexed Pluronic multi-block copolymers for controlled protein delivery. J Control Release 127:22–30

    Article  CAS  PubMed  Google Scholar 

  • Chung J, Vlugt-Wensink K, Hennink W, Zhang Z (2005) Effect of polymerization conditions on the network properties of dex-HEMA microspheres and macro-hydrogels. Int J Pharm 288:51–61

    Article  CAS  PubMed  Google Scholar 

  • Corobea MC, Muhulet O, Miculescu F, Antoniac IV, Vuluga Z, Florea D et al (2016) Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires. Polym Adv Technol 27(12):1586–1595

    Article  CAS  Google Scholar 

  • Coombes A, Verderio E, Shaw B, Li X, Griffin M, Downes S (2002) Biocomposites of non-crosslinked natural and synthetic polymers. Biomaterials 23:2113–2118

    Article  CAS  PubMed  Google Scholar 

  • Daniele MA, Adams AA, Naciri J, North SH, Ligler FS (2014) Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials 35:1845–1856

    Article  CAS  PubMed  Google Scholar 

  • De Groot CJ, Van Luyn MJ, Van Dijk-Wolthuis WN, Cadée JA, Plantinga JA, Den Otter W, Hennink WE (2001) In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts. Biomaterials 22:1197–1203

    Article  PubMed  Google Scholar 

  • De Jong S, van Dijk-Wolthuis W, Kettenes-Van den Bosch J, Schuyl P, Hennink W (1998) Monodisperse enantiomeric lactic acid oligomers: preparation, characterization, and stereocomplex formation. Macromolecules 31:6397–6402

    Article  Google Scholar 

  • De las Heras Alarcón C, Farhan T, Osborne VL, Huck WT, Alexander C (2005) Bioadhesion at micro-patterned stimuli-responsive polymer brushes. J Mater Chem 15:2089–2094

    Article  CAS  Google Scholar 

  • Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  PubMed  Google Scholar 

  • Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2004) Temperature-responsive cell culture surfaces enable “on-off” affinity control between cell integrins and RGDS ligands. Biomacromol 5:505–510

    Article  CAS  Google Scholar 

  • Fomina N, Sankaranarayanan J, Almutairi A (2012) Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Delivery Rev 64:1005–1020

    Article  CAS  Google Scholar 

  • Fukushima K, Kimura Y (2006) Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polym Int 55:626–642

    Article  CAS  Google Scholar 

  • Gu X, Wang J, Wang Y, Wang Y, Gao H, Wu G (2013) Layer-by-layer assembled polyaspartamide nanocapsules for pH-responsive protein delivery. Colloids Surf, B 108:205–211

    Article  CAS  Google Scholar 

  • Guo D-S, Wang K, Wang Y-X, Liu Y (2012) Cholinesterase-responsive supramolecular vesicle. J Am Chem Soc 134:10244–10250

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7:569–579

    Article  CAS  PubMed  Google Scholar 

  • Habraken W, Wolke J, Jansen J (2007) Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:234–248

    Article  CAS  PubMed  Google Scholar 

  • Hayashi G, Hagihara M, Dohno C, Nakatani K (2007) Photoregulation of a peptide-RNA interaction on a gold surface. J Am Chem Soc 129:8678–8679

    Article  CAS  PubMed  Google Scholar 

  • Hennink W, Franssen O, van Dijk-Wolthuis W, Talsma H (1997) Dextran hydrogels for the controlled release of proteins. J Control Release 48:107–114

    Article  CAS  Google Scholar 

  • Heskins M, Guillet JE (1968) Solution properties of poly (N-isopropylacrylamide). J Macromol Sci Chem 2:1441–1455

    Article  CAS  Google Scholar 

  • Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  • Hu BH, Messersmith P (2005) Enzymatically cross-linked hydrogels and their adhesive strength to biosurfaces. Orthod Craniofac Res 8:145–149

    Article  PubMed  Google Scholar 

  • Huang X, Meng X, Tang F, Li L, Chen D, Liu H, Zhang Y, Ren J (2008) Mesoporous magnetic hollow nanoparticles—protein carriers for lysosome escaping and cytosolic delivery. Nanotechnology 19:445101

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zhang B, Xu G, Hao W (2013) Swelling behaviours and mechanical properties of silk fibroin-polyurethane composite hydrogels. Composites Science and Technology 84:15–22

    Article  CAS  Google Scholar 

  • Huang Z, Tang F (2005) Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres. J Colloid Interface Sci 281:432–436

    Article  CAS  PubMed  Google Scholar 

  • Huh KM, Cho YW, Chung H, Kwon IC, Jeong SY, Ooya T, Lee WK, Sasaki S, Yui N (2004) Supramolecular Hydrogel Formation Based on Inclusion Complexation Between Poly (ethylene glycol)-Modified Chitosan and alpha-Cyclodextrin. Macromol Biosci 4:92–99

    Article  CAS  PubMed  Google Scholar 

  • Huh KM, Ooya T, Lee WK, Sasaki S, Kwon IC, Jeong SY, Yui N (2001) Supramolecular-structured hydrogels showing a reversible phase transition by inclusion complexation between poly (ethylene glycol) grafted dextran and alpha-cyclodextrin. Macromolecules 34:8657–8662

    Article  CAS  Google Scholar 

  • Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly (lactides). Macromolecules 20:904–906

    Article  CAS  Google Scholar 

  • Inomata H, Goto S, Saito S (1990) Phase transition of N-substituted acrylamide gels. Macromolecules 23:4887–4888

    Article  CAS  Google Scholar 

  • Ionov L, Houbenov N, Sidorenko A, Stamm M, Minko S (2009) Stimuli-responsive command polymer surface for generation of protein gradients. Biointerphases 4:FA45–FA49

    Article  CAS  PubMed  Google Scholar 

  • Kamada J, Koynov K, Corten C, Juhari A, Yoon JA, Urban MW, Balazs AC, Matyjaszewski K (2010) Redox responsive behavior of thiol/disulfide-functionalized star polymers synthesized via atom transfer radical polymerization. Macromolecules 43:4133–4139

    Article  CAS  Google Scholar 

  • Kopecek J (2009) Hydrogels: From soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci, Part A: Polym Chem 47:5929–5946

    Article  CAS  Google Scholar 

  • Kuhn W, Hargitay B, Katchalsky A, Eisenberg H (1950) Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature 165:514–516

    Article  CAS  Google Scholar 

  • Kuo W-Y, Lai H-M (2011) Morphological, structural and rheological properties of beta-cyclodextrin based polypseudorotaxane gels. Polymer 52:3389–3395

    Article  CAS  Google Scholar 

  • Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H (2005) Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun 4312–4314

    Google Scholar 

  • Kwon IC, Bae YH, Kim SW (1991) Electrically erodible polymer gel for controlled release of drugs. Nature 354:291–293

    Article  CAS  PubMed  Google Scholar 

  • La Rica R, Aili D, Stevens MM (2012) Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Delivery Rev 64:967–978

    Article  CAS  Google Scholar 

  • Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492

    Article  CAS  PubMed  Google Scholar 

  • Lee ES, Na K, Bae YH (2005) Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release 103:405–418

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Yoon J, Lee J, Kim S, Jung H, Kim S, Joh J, Lee H, Lee D, Lee S (2004) Sustained release of vascular endothelial growth factor from calcium-induced alginate hydrogels reinforced by heparin and chitosan. In: Transplantation proceedings, pp 2464–2465

    Google Scholar 

  • Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880

    Article  CAS  PubMed  Google Scholar 

  • Leeuwenburgh SC, Jansen JA, Mikos AG (2007) Functionalization of oligo (poly (ethylene glycol) fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes. J Biomater Sci Polym Ed 18:1547–1564

    PubMed  CAS  Google Scholar 

  • Li J, Harada A, Kamachi M (1994) Sol-gel transition during inclusion complex formation between alpha-cyclodextrin and high molecular weight poly (ethylene glycol) s in aqueous solution. Polym J 26:1019–1026

    Article  CAS  Google Scholar 

  • Li J, Ni X, Zhou Z, Leong KW (2003) Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly (propylene oxide)-poly (ethylene oxide)-poly (propylene oxide) triblock copolymers and alpha-cyclodextrin. J Am Chem Soc 125:1788–1795

    Article  CAS  PubMed  Google Scholar 

  • Lim DW, Choi SH, Park TG (2000) A new class of biodegradable hydrogels stereocomplexed by enantiomeric oligo (lactide) side chains of poly (HEMA-g-OLA) s. Macromol Rapid Commun 21:464–471

    Article  CAS  Google Scholar 

  • Lue SJ, Hsu J-J, Wei T-C (2008) Drug permeation modeling through the thermo-sensitive membranes of poly (N-isopropylacrylamide) brushes grafted onto micro-porous films. J Membr Sci 321:146–154

    Article  CAS  Google Scholar 

  • Lutolf M, Lauer-Fields J, Schmoekel H, Metters A, Weber F, Fields G, Hubbell J (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci 100:5413–5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma D, Tu K, Zhang L-M (2010) Bioactive supramolecular hydrogel with controlled dual drug release characteristics. Biomacromol 11:2204–2212

    Article  CAS  Google Scholar 

  • Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F (2013) Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev 65:1172–1187

    Article  CAS  PubMed  Google Scholar 

  • Mendes PM (2008) Stimuli-responsive surfaces for bio-applications. Chem Soc Rev 37:2512–2529

    Article  CAS  PubMed  Google Scholar 

  • Miyata T, Uragami T, Nakamae K (2002) Biomolecule-sensitive hydrogels. Adv Drug Deliv Rev 54:79–98

    Article  CAS  PubMed  Google Scholar 

  • Miculescu M, Thakur VK, Miculescu F, Voicu SI (2016) Graphene-based polymer nanocomposite membranes: a review. Polym Adv Technol 27(7):844–859

    Article  CAS  Google Scholar 

  • Mo R, Sun Q, Xue J, Li N, Li W, Zhang C, Ping Q (2012) Multistage pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery. Adv Mater 24:3659–3665

    Article  CAS  PubMed  Google Scholar 

  • Motornov M, Tam TK, Pita M, Tokarev I, Katz E, Minko S (2009) Switchable selectivity for gating ion transport with mixed polyelectrolyte brushes: approaching ‘smart’ drug delivery systems. Nanotechnology 20:434006

    Article  CAS  PubMed  Google Scholar 

  • Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003

    Article  CAS  PubMed  Google Scholar 

  • Na K, won Kim S, Sun BK, Woo DG, Yang HN, Chung HM, Park KH (2007) Osteogenic differentiation of rabbit mesenchymal stem cells in thermo-reversible hydrogel constructs containing hydroxyapatite and bone morphogenic protein-2 (BMP-2). Biomaterials 28:2631–2637

    Article  CAS  PubMed  Google Scholar 

  • Otake K, Inomata H, Konno M, Saito S (1990) Thermal analysis of the volume phase transition with N-isopropylacrylamide gels. Macromolecules 23:283–289

    Article  CAS  Google Scholar 

  • Oudshoorn MH, Rissmann R, Bouwstra JA, Hennink WE (2007) Synthesis of methacrylated hyaluronic acid with tailored degree of substitution. Polymer 48:1915–1920

    Article  CAS  Google Scholar 

  • Patenaude M, Hoare T (2012) Injectable, mixed natural-synthetic polymer hydrogels with modular properties. Biomacromol 13:369–378

    Article  CAS  Google Scholar 

  • Pauling L, Corey RB (1953) Two rippled-sheet configurations of polypeptide chains, and a note about the pleated sheets. Proc Natl Acad Sci USA 39:253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11:1–35

    Article  CAS  Google Scholar 

  • Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Delivery Rev

    Google Scholar 

  • Roorda W, Bodde H, De Boer A, Junginger H (1986) Synthetic hydrogels as drug delivery systems. Pharmaceutisch Weekblad 8:165–189

    Article  CAS  PubMed  Google Scholar 

  • Ruel-Gariépy E, Leroux JC (2004) In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm 58:409–426

    Article  CAS  PubMed  Google Scholar 

  • Santin M, Huang S, Iannace S, Ambrosio L, Nicolais L, Peluso G (1996) Synthesis and characterization of a new interpenetrated poly (2-hydroxyethylmethacrylate)—gelatin composite polymer. Biomaterials 17:1459–1467

    Article  CAS  PubMed  Google Scholar 

  • Schmaljohann D (2006) Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  CAS  PubMed  Google Scholar 

  • Schnepp ZA, Gonzalez-McQuire R, Mann S (2006) Hybrid biocomposites based on calcium phosphate mineralization of self-assembled supramolecular hydrogels. Adv Mater 18:1869–1872

    Article  CAS  Google Scholar 

  • Sionkowska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Prog Polym Sci 36:1254–1276

    Article  CAS  Google Scholar 

  • Slager J, Domb AJ (2003) Biopolymer stereocomplexes. Adv Drug Deliv Rev 55:549–583

    Article  CAS  PubMed  Google Scholar 

  • Steinberg I, Oplatka A, Katchalsky A (1966) Mechanochemical engines. Nature 210:568–571

    Article  CAS  Google Scholar 

  • Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113. https://doi.org/10.1038/nmat2614

    Article  PubMed  CAS  Google Scholar 

  • Sun J-Y, Zhao X, Illeperuma WR, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takami K, Watanabe J, Takai M, Ishihara K (2011) Spontaneous formation of a hydrogel composed of water-soluble phospholipid polymers grafted with enantiomeric oligo (lactic acid) chains. J Biomater Sci Polym Ed 22:77–89

    Article  CAS  PubMed  Google Scholar 

  • Tan H, Luan H, Hu Y, Hu X (2013) Covalently crosslinked chitosan-poly (ethylene glycol) hybrid hydrogels to deliver insulin for adipose-derived stem cells encapsulation. Macromol Res 21:392–399

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014b) Recent advances in graft copolymerization and applications of Chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847

    Article  CAS  PubMed  Google Scholar 

  • Teixeira LSM, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M (2012) Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials 33:1281–1290

    Article  CAS  PubMed  Google Scholar 

  • Tomer R, Dimitrijevic D, Florence AT (1995) Electrically controlled release of macromolecules from cross-linked hyaluronic acid hydrogels. J Control Release 33:405–413

    Article  CAS  Google Scholar 

  • Trache D, Hazwan Hussin M, Mohamad Haafiz MK, Kumar Thakur V (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H (2005) Poly (lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597

    Article  CAS  PubMed  Google Scholar 

  • VanBemmelen JM (1894) Der Hydrogel und das kristallinische Hydrat des Kupferoxydes. Z Anorg Chem 5:466

    Article  Google Scholar 

  • Voicu SI, Condruz RM, Mitran V, Cimpean A, Miculescu F, Andronescu C, Thakur VK (2016) Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications. ACS Sustain Chem Eng 4(3):1765–1774

    Article  CAS  Google Scholar 

  • Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3:1215–1242

    Article  CAS  Google Scholar 

  • Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  • Wong VN, Fernando G, Wagner AR, Zhang J, Kinsel GR, Zauscher S, Dyer DJ (2009) Separation of peptides with polyionic nanosponges for MALDI-MS analysis. Langmuir 25:1459–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Tichy SE, Pérez LM, Maria GC, Lindahl PA, Simanek EE (2003) Evaluation of multivalent dendrimers based on melamine: kinetics of thiol-disulfide exchange depends on the structure of the dendrimer. J Am Chem Soc 125:5086–5094

    Article  CAS  PubMed  Google Scholar 

  • Zhao S-P, Zhang L-M, Ma D (2006) Supramolecular hydrogels induced rapidly by inclusion complexation of poly (varepsilon-caprolactone)-poly (ethylene glycol)-poly (varepsilon-caprolactone) block copolymers with alpha-cyclodextrin in aqueous solutions. J Phys Chem B 110:12225–12229

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Gan X, Liu T, Yang Q, Li G (2006) Electrochemical study of photovoltaic effect of nano titanium dioxide on hemoglobin. Bioelectrochemistry 69:34–40

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim M. El-Sherbiny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Sherbiny, I.M., Khalil, I.A., Ali, I.H. (2018). Updates on Stimuli-Responsive Polymers: Synthesis Approaches and Features. In: Thakur, V., Thakur, M. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6086-1_4

Download citation

Publish with us

Policies and ethics