Skip to main content

Peptide-Based Supramolecular Chemistry

  • Chapter
  • First Online:
Supramolecular Chemistry of Biomimetic Systems

Abstract

Supramolecular chemistry of highly important biomolecules and bioinspired molecules has attracted tremendous interest due to its acknowledged importance in construction of novel functional materials and in revealing the mechanisms of formation and evolution of natural living organisms. As one kind of representative biomolecules, peptides are among the most appealing programmable building blocks for supramolecular self-assembly. In this chapter, we present recent progresses in supramolecular chemistry of self-assembling aromatic dipeptides, including self-assembly of aromatic dipeptides and co-assembly of aromatic dipeptides with various functional molecular motifs, such as porphyrins, azobenzenes, photosensitizers, polyoxometalates, quantum dots, and glutaraldehyde. Particularly, hierarchical self-assembly of peptides and structural transition of the self-assembled peptide architectures are in-depth discussed in controllable fabrication of peptide materials along with revealing the non-covalent interactions that determine the self-assembly and the structure–property relationships of the formed peptide materials. Also, the applications of peptide-based supramolecular materials as optical waveguiding materials, biomimetic energy materials, and biomaterials are highlighted, providing an increased understanding of the role of peptide-based supramolecular chemistry in construction of novel functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Askarieh G, Hedhammar M, Nordling K et al (2010) Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465:236–238

    Article  Google Scholar 

  2. Ybe JA, Brodsky FM, Hofmann K et al (1999) Clathrin self-assembly is mediated by a tandemly repeated superhelix. Nature 399:371–375

    Article  Google Scholar 

  3. Yonekura K, Maki S, Morgan DG et al (2000) The bacterial flagellar cap as the rotary promoter of flagellin self-assembly. Science 290:2148–2152

    Article  Google Scholar 

  4. Tanaka S, Kerfeld CA, Sawaya MR et al (2008) Atomic-level models of the bacterial carboxysome shell. Science 319:1083–1086

    Article  Google Scholar 

  5. van den Ent F, Amos LA, Lowe J (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413:39–44

    Article  Google Scholar 

  6. Luger K, Mader AW, Richmond RK et al (1997) Crystal structure of the nucleosome core particle at 2.8 angstrom resolution. Nature 389:251–260

    Article  Google Scholar 

  7. Shih WM (2015) Exploiting weak interactions in DNA self-assembly. Science 347:1417–1418

    Article  Google Scholar 

  8. Cerny J, Hobza P (2007) Non-covalent interactions in biomacromolecules. Phys Chem Chem Phys 9:5291–5303

    Article  Google Scholar 

  9. Zhang SG (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178

    Article  Google Scholar 

  10. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684–1688

    Article  Google Scholar 

  11. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  Google Scholar 

  12. Kuzyk A, Schreiber R, Fan ZY et al (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483:311–314

    Article  Google Scholar 

  13. Zou QL, Liu K, Abbas M et al (2016) Peptide-modulated self-assembly of chromophores toward biomimetic light-harvesting nanoarchitectonics. Adv Mater 28:1031–1043

    Article  Google Scholar 

  14. Stupp SI (2010) Self-Assembly and biomaterials. Nano Lett 10:4783–4786

    Article  Google Scholar 

  15. Chen CJ, Liu K, Li JB et al (2015) Functional architectures based on self-assembly of bio-inspired dipeptides: structure modulation and its photoelectronic applications. Adv Colloid Interface Sci 225:177–193

    Article  Google Scholar 

  16. Percec V, Dulcey AE, Balagurusamy VSK et al (2004) Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature 430:764–768

    Article  Google Scholar 

  17. Shu SJ, Sun L, Zhang XG et al (2011) Polysaccharides-based polyelectrolyte nanoparticles as protein drugs delivery system. J Nanopart Res 13:3657–3670

    Article  Google Scholar 

  18. Rest C, Kandanelli R, Fernandez G (2015) Strategies to create hierarchical self-assembled structures via cooperative non-covalent interactions. Chem Soc Rev 44:2543–2572

    Article  Google Scholar 

  19. Mann S (2009) Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat Mater 8:781–792

    Article  Google Scholar 

  20. Groschel AH, Walther A, Lobling TI et al (2013) Guided hierarchical co-assembly of soft patchy nanoparticles. Nature 503:247–251

    Google Scholar 

  21. Xing RR, Jiao TF, Liu YM et al (2016) Co-assembly of graphene oxide and albumin/photosensitizer nanohybrids towards enhanced photodynamic therapy. Polymers 8:181

    Article  Google Scholar 

  22. Sharma J, Chhabra R, Cheng A et al (2009) Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323:112–116

    Article  Google Scholar 

  23. Yan H, Park SH, Finkelstein G et al (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301:1882–1884

    Article  Google Scholar 

  24. Ercole F, Davis TP, Evans RA (2010) Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 1:37–54

    Article  Google Scholar 

  25. Zimenkov Y, Dublin SN, Ni R et al (2006) Rational design of a reversible pH-responsive switch for peptide self-assembly. J Am Chem Soc 128:6770–6771

    Article  Google Scholar 

  26. Zhang SG (2012) Lipid-like self-assembling peptides. Acc Chem Res 45:2142–2150

    Article  Google Scholar 

  27. Adler-Abramovich L, Gazit E (2014) The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem Soc Rev 43:6881–6893

    Article  Google Scholar 

  28. Frederix PWJM, Scott GG, Abul-Haija YM et al (2015) Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat Chem 7:30–37

    Article  Google Scholar 

  29. Zhou J, Du XW, Yamagata N et al (2016) Enzyme-instructed self-assembly of small D-peptides as a multiple-step process for selectively killing cancer cells. J Am Chem Soc 138:3813–3823

    Article  Google Scholar 

  30. Martinek TA, Hetenyi A, Fulop L et al (2006) Secondary structure dependent self-assembly of beta-peptides into nanosized fibrils and membranes. Angew Chem Int Edit 45:2396–2400

    Article  Google Scholar 

  31. Aggeli A, Bell M, Boden N et al (1997) Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature 386:259–262

    Article  Google Scholar 

  32. Smith KH, Tejeda-Montes E, Poch M et al (2011) Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials. Chem Soc Rev 40:4563–4577

    Article  Google Scholar 

  33. De Santis E, Ryadnov MG (2015) Peptide self-assembly for nanomaterials: the old new kid on the block. Chem Soc Rev 44:8288–8300

    Article  Google Scholar 

  34. Cui HG, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94:1–18

    Article  Google Scholar 

  35. Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36:1263–1269

    Article  Google Scholar 

  36. Matson JB, Stupp SI (2012) Self-assembling peptide scaffolds for regenerative medicine. Chem Commun 48:26–33

    Article  Google Scholar 

  37. Fernandez-Lopez S, Kim HS, Choi EC et al (2001) Antibacterial agents based on the cyclic D, L-alpha-peptide architecture. Nature 412:452–455

    Article  Google Scholar 

  38. Kim S, Kim JH, Lee JS et al (2015) Beta-sheet-forming, self-assembled peptide nanomaterials towards optical, energy, and healthcare applications. Small 11:3623–3640

    Article  Google Scholar 

  39. Mandal D, Shirazi AN, Parang K (2014) Self-assembly of peptides to nanostructures. Org Biomol Chem 12:3544–3561

    Article  Google Scholar 

  40. Wang J, Liu K, Xing RR et al (2016) Peptide self-assembly: thermodynamics and kinetics. Chem Soc Rev 45:5589–5604

    Article  Google Scholar 

  41. Zhang SG, Marini DM, Hwang W et al (2002) Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr Opin Chem Biol 6:865–871

    Article  Google Scholar 

  42. Stendahl JC, Rao MS, Guler MO et al (2006) Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv Funct Mater 16:499–508

    Article  Google Scholar 

  43. Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–627

    Article  Google Scholar 

  44. Yan XH, Zhu PL, Li JB (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39:1877–1890

    Article  Google Scholar 

  45. Tao K, Levin A, Adler-Abramovich L et al (2016) Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials. Chem Soc Rev 45:3935–3953

    Article  Google Scholar 

  46. Amdursky N, Molotskii M, Gazit E et al (2010) Elementary building blocks of self-assembled peptide nanotubes. J Am Chem Soc 132:15632–15636

    Article  Google Scholar 

  47. Yan XH, Cui Y, He Q et al (2008) Organogels based on self-assembly of diphenylalanine peptide and their application to immobilize quantum dots. Chem Mater 20:1522–1526

    Article  Google Scholar 

  48. Su Y, Yan XH, Wang AH et al (2010) A peony-flower-like hierarchical mesocrystal formed by diphenylalanine. J Mater Chem 20:6734–6740

    Article  Google Scholar 

  49. Su Y, He Q, Yan XH et al (2011) Peptide mesocrystals as templates to create an Au surface with stronger surface-enhanced Raman spectroscopic properties. Chem Eur J 17:3370–3375

    Article  Google Scholar 

  50. Du MC, Zhu PL, Yan XH et al (2011) Honeycomb self-assembled peptide scaffolds by the breath figure method. Chem Eur J 17:4238–4245

    Article  Google Scholar 

  51. Yan XH, He Q, Wang KW et al (2007) Transition of cationic dipeptide nanotubes into vesicles and oligonucleotide delivery. Angew Chem Int Edit 46:2431–2434

    Article  Google Scholar 

  52. Yan XH, Cui Y, He Q et al (2008) Reversible transitions between peptide nanotubes and vesicle-like structures including theoretical modeling studies. Chem Eur J 14:5974–5980

    Article  Google Scholar 

  53. Liu XC, Zhu PL, Fei JB et al (2015) Synthesis of peptide-based hybrid nanobelts with enhanced color emission by heat treatment or water induction. Chem Eur J 21:9461–9467

    Article  Google Scholar 

  54. Zhu PL, Yan XH, Su Y et al (2010) Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals. Chem Eur J 16:3176–3183

    Article  Google Scholar 

  55. Knowles TP, Fitzpatrick AW, Meehan S et al (2007) Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318:1900–1903

    Article  Google Scholar 

  56. Krone MG, Hua L, Soto P et al (2008) Role of water in mediating the assembly of Alzheimer amyloid-beta a beta 16-22 protofilaments. J Am Chem Soc 130:11066–11072

    Article  Google Scholar 

  57. Wang J, Liu K, Yan LY et al (2016) Trace solvent as a predominant factor to tune dipeptide self-assembly. ACS Nano 10:2138–2143

    Article  Google Scholar 

  58. Yan XH, Su Y, Li JB et al (2011) Uniaxially oriented peptide crystals for active optical waveguiding. Angew Chem Int Edit 50:11186–11191

    Article  Google Scholar 

  59. Li YX, Yan LY, Liu K et al (2016) Solvothermally mediated self-assembly of ultralong peptide nanobelts capable of optical waveguiding. Small 12:2575–2579

    Article  Google Scholar 

  60. Yan XH, Li JB, Mowald H (2011) Self-assembly of hexagonal peptide microtubes and their optical waveguiding. Adv Mater 23:2796–2801

    Article  Google Scholar 

  61. Li Q, Jia Y, Dai LR et al (2015) Controlled rod nanostructured assembly of diphenylalanine and their optical waveguide properties. ACS Nano 9:2689–2695

    Article  Google Scholar 

  62. Li Q, Ma HC, Wang AH et al (2015) Self-assembly of cationic dipeptides forming rectangular microtubes and microrods with optical waveguiding properties. Adv Opt Mater 3:194–198

    Article  Google Scholar 

  63. Zou QL, Zhang L, Yan XH et al (2014) Multifunctional porous microspheres based on peptide-porphyrin hierarchical co-assembly. Angew Chem Int Ed 53:2366–2370

    Article  Google Scholar 

  64. Liu K, Xing RR, Chen CJ et al (2015) Peptide-induced hierarchical long-range order and photocatalytic activity of porphyrin assemblies. Angew Chem Int Ed 54:500–505

    Google Scholar 

  65. Liu K, Kang Y, Ma G et al (2016) Molecular and mesoscale mechanism for hierarchical self-assembly of dipeptide and porphyrin light-harvesting system. Phys Chem Chem Phys 18:16738–16747

    Article  Google Scholar 

  66. Yano S, Hirohara S, Obata M et al (2011) Current states and future views in photodynamic therapy. J Photochem Photobiol C 12:46–67

    Article  Google Scholar 

  67. Xing RR, Liu K, Jiao TF et al (2016) An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv Mater 28:3669–3676

    Article  Google Scholar 

  68. Zhang N, Zhao FF, Zou QL et al (2016) Multitriggered tumor-responsive drug delivery vehicles based on protein and polypeptide coassembly for enhanced photodynamic tumor ablation. Small 12:5936–5943

    Article  Google Scholar 

  69. Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115:1990–2042

    Article  Google Scholar 

  70. Zhang RY, Xing RR, Jiao TF et al (2016) Carrier-free, chemophotodynamic dual nanodrugs via self-assembly for synergistic antitumor therapy. ACS Appl Mater Interfaces 8:13262–13269

    Article  Google Scholar 

  71. Liu K, Xing RR, Zou QL et al (2016) Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy. Angew Chem Int Ed 55:3036–3039

    Article  Google Scholar 

  72. Wang J, Mei J, Hu RR et al (2012) Click synthesis, aggregation-induced emission, E/Z isomerization, self-organization, and multiple chromisms of pure stereoisomers of a tetraphenylethene-cored luminogen. J Am Chem Soc 134:9956–9966

    Article  Google Scholar 

  73. Liu K, Zhang RR, Li YX et al (2016) Tunable aggregation-induced emission of tetraphenylethylene via short peptide-directed self-assembly. Adv Mater Interfaces 4:1600183

    Article  Google Scholar 

  74. Ma HC, Fei JB, Li Q et al (2015) Photo-induced reversible structural transition of cationic diphenylalanine peptide self-assembly. Small 11:1787–1791

    Article  Google Scholar 

  75. Ma HC, Fei JB, Cui Y et al (2013) Manipulating assembly of cationic dipeptides using sulfonic azobenzenes. Chem Commun 49:9956–9958

    Article  Google Scholar 

  76. Cronin L, Muller A (2012) From serendipity to design of polyoxometalates at the nanoscale, aesthetic beauty and applications. Chem Soc Rev 41:7333–7334

    Article  Google Scholar 

  77. Yan XH, Zhu PL, Fei JB et al (2010) Self-assembly of peptide-inorganic hybrid spheres for adaptive encapsulation of guests. Adv Mater 22:1283–1287

    Article  Google Scholar 

  78. Xing RR, Jiao TF, Feng L et al (2015) Photothermally-induced molecular self-assembly of macroscopic peptide-inorganic hybrid films. Sci Adv Mater 7:1701–1707

    Article  Google Scholar 

  79. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  Google Scholar 

  80. Yan XH, Cui Y, Qi W et al (2008) Self-assembly of peptide-based colloids containing lipophilic nanocrystals. Small 4:1687–1693

    Article  Google Scholar 

  81. Zhang H, Fei JB, Yan XH et al (2015) Enzyme-responsive release of doxorubicin from monodisperse dipeptide-based nanocarriers for highly efficient cancer treatment in vitro. Adv Funct Mater 25:1193–1204

    Article  Google Scholar 

  82. Ma K, Xing RR, Jiao TF et al (2016) Injectable self-assembled dipeptide-based nanocarriers for tumor delivery and effective in vivo photodynamic therapy. ACS Appl Mater Interfaces 8:30759–30767

    Article  Google Scholar 

  83. Wang J, Shen GZ, Ma K et al (2016) Dipeptide concave nanospheres based on interfacially controlled self-assembly: from crescent to solid. Phys Chem Chem Phys 18:30926–30930

    Article  Google Scholar 

  84. Li Q, Ma HC, Jia Y et al (2015) Facile fabrication of diphenylalanine peptide hollow spheres using ultrasound-assisted emulsion templates. Chem Commun 51:7219–7221

    Article  Google Scholar 

  85. Liu K, Xing RR, Li YX et al (2016) Mimicking primitive photobacteria: sustainable hydrogen evolution based on peptide–porphyrin co-assemblies with a self-mineralized reaction center. Angew Chem Int Ed 55:12503–12507

    Article  Google Scholar 

  86. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discovery 9:615–627

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Project Nos. 21522307, 21473208, 91434103, and 51403214), the Chinese Academy of Sciences (CAS, Project No. QYZDB-SSW-JSC034), and the Talent Fund of the Recruitment Program of Global Youth Experts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehai Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zou, Q., Liu, K., Abbas, M., Yan, X. (2017). Peptide-Based Supramolecular Chemistry. In: Li, J. (eds) Supramolecular Chemistry of Biomimetic Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-6059-5_7

Download citation

Publish with us

Policies and ethics