Skip to main content

miR-155 Dysregulation and Therapeutic Intervention in Multiple Sclerosis

  • Chapter
  • First Online:
Regulation of Inflammatory Signaling in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1024))

Abstract

microRNAs play a fundamental role in the immune system. One particular microRNA, miR-155 plays a critical role in hematopoietic cell development and tightly regulates innate and adaptive immune responses in response to infection. However, its dysregulation, more specifically its overexpression, is closely associated with various inflammatory disorders. The purpose of this review is to consolidate how miR-155 underpins a variety of processes that contribute to the pathology of multiple sclerosis (MS). In particular, the impact of miR-155 is discussed with respect to human pathology and animal models. How miR-155 contributes to the activation of pathogenic immune cells, the permeability of the blood-brain barrier, and neurodegeneration in relation to MS is described. Many environmental risk factors associated with MS susceptibility can cause upregulation of miR-155, while many of the current disease-modifying treatments may work by inhibiting miR-155. From this review, it is clear that miR-155 is a realistic and feasible diagnostic, prognostic, and therapeutic target for the treatment of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Albrecht P, Bouchachia I, Goebels N, Henke N, Hofstetter HH et al (2012) Effects of dimethyl fumarate on neuroprotection and immunomodulation. J Neuroinflammation 9:163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  3. Balusu S, Van Wonterghem E, De Rycke R, Raemdonck K, Stremersch S et al (2016) Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med 8:1162–1183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  5. Belbasis L, Bellou V, Evangelou E, Ioannidis JP, Tzoulaki I (2015) Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol 14:263–273

    Article  PubMed  Google Scholar 

  6. Benedek G, Meza-Romero R, Jordan K, Keenlyside L, Offner H et al (2015) HLA-DRalpha1-mMOG-35-55 treatment of experimental autoimmune encephalomyelitis reduces CNS inflammation, enhances M2 macrophage frequency, and promotes neuroprotection. J Neuroinflammation 12:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bruning U, Cerone L, Neufeld Z, Fitzpatrick SF, Cheong A et al (2011) MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol Cell Biol 31:4087–4096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bruns H, Bottcher M, Qorraj M, Fabri M, Jitschin S et al (2017) CLL-cell-mediated MDSC induction by exosomal miR-155 transfer is disrupted by vitamin D. Leukemia 31:985–988

    Article  PubMed  CAS  Google Scholar 

  9. Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G et al (2015) Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol 77:75–99

    Article  PubMed  CAS  Google Scholar 

  10. Cardoso AL, Guedes JR, Pereira de Almeida L, Pedroso de Lima MC (2012) miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production. Immunology 135:73–88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cerutti C, Soblechero-Martin P, Wu D, Lopez-Ramirez MA, de Vries H et al (2016) MicroRNA-155 contributes to shear-resistant leukocyte adhesion to human brain endothelium in vitro. Fluids Barriers CNS 13:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21:452–460

    Article  PubMed  CAS  Google Scholar 

  13. Chen Y, Liu W, Sun T, Huang Y, Wang Y et al (2013) 1,25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting microRNA-155-SOCS1 in macrophages. J Immunol 190:3687–3695

    Article  PubMed  CAS  Google Scholar 

  14. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK et al (2011) MicroRNAs in body fluids--the mix of hormones and biomarkers. Nat Rev Clin Oncol 8:467–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S et al (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A 103:7024–7029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cox MB, Cairns MJ, Gandhi KS, Carroll AP, Moscovis S et al (2010) MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS One 5:e12132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cross AH, Naismith RT (2014) Established and novel disease-modifying treatments in multiple sclerosis. J Int Med 275(4):350–363. doi:10.1111/joim.12203. Epub 2014 March 11. Review. PubMed PMID:24444048

    Article  PubMed  CAS  Google Scholar 

  18. Cua DJ, Groux H, Hinton DR, Stohlman SA, Coffman RL (1999) Transgenic interleukin 10 prevents induction of experimental autoimmune encephalomyelitis. J Exp Med 189:1005–1010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cua DJ, Hutchins B, LaFace DM, Stohlman SA, Coffman RL (2001) Central nervous system expression of IL-10 inhibits autoimmune encephalomyelitis. J Immunol 166:602–608

    Article  PubMed  CAS  Google Scholar 

  20. Dargahi N, Katsara M, Tselios T, Androutsou ME, de Courten M et al (2017) Multiple sclerosis: immunopathology and treatment update. Brain Sci 7

    Google Scholar 

  21. Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15:545–558

    Article  PubMed  CAS  Google Scholar 

  22. Eis PS, Tam W, Sun L, Chadburn A, Li Z et al (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 102:3627–3632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Escobar TM, Kanellopoulou C, Kugler DG, Kilaru G, Nguyen CK et al (2014) miR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression. Immunity 40:865–879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Faravelli I, Corti S (2017) MicroRNA-directed neuronal reprogramming as a therapeutic strategy for neurological diseases. Mol Neurobiol

    Google Scholar 

  25. Freilich RW, Woodbury ME, Ikezu T (2013) Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia. PLoS One 8:e79416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Galloway DA, Moore CS (2016) miRNAs as emerging regulators of oligodendrocyte development and differentiation. Front cell. Dev Biol 4:59

    Google Scholar 

  27. Gandhi R (2015) miRNA in multiple sclerosis: search for novel biomarkers. Mult Scler 21:1095–1103

    Article  PubMed  CAS  Google Scholar 

  28. Gantier MP, McCoy CE, Rusinova I, Saulep D, Wang D et al (2011) Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res 39:5692–5703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Gao L, Ai J, Xie Z, Zhou C, Liu C et al (2015) Dynamic expression of viral and cellular microRNAs in infectious mononucleosis caused by primary Epstein-Barr virus infection in children. Virol J 12:208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gatto G, Rossi A, Rossi D, Kroening S, Bonatti S, et al. (2008) Epstein-Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-kappaB

    Google Scholar 

  31. Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9:393–407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gregory SG, Schmidt S, Seth P, Oksenberg JR, Hart J, et al. (2007) Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet

    Google Scholar 

  33. Guedes JR, Custodia CM, Silva RJ, de Almeida LP, Pedroso de Lima MC et al (2014) Early miR-155 upregulation contributes to neuroinflammation in Alzheimer’s disease triple transgenic mouse model. Hum Mol Genet 23:6286–6301

    Article  PubMed  CAS  Google Scholar 

  34. Guinn D, Ruppert AS, Maddocks K, Jaglowski S, Gordon A et al (2015) miR-155 expression is associated with chemoimmunotherapy outcome and is modulated by Bruton’s tyrosine kinase inhibition with Ibrutinib. Leukemia 29:1210–1213

    Article  PubMed  CAS  Google Scholar 

  35. Hartmann FJ, Khademi M, Aram J, Ammann S, Kockum I et al (2014) Multiple sclerosis-associated IL2RA polymorphism controls GM-CSF production in human TH cells. Nat Commun 5:5056

    Article  PubMed  CAS  Google Scholar 

  36. Hecker M, Thamilarasan M, Koczan D, Schroder I, Flechtner K et al (2013) MicroRNA expression changes during interferon-beta treatment in the peripheral blood of multiple sclerosis patients. Int J Mol Sci 14:16087–16110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hu R, Huffaker TB, Kagele DA, Runtsch MC, Bake E et al (2013) MicroRNA-155 confers encephalogenic potential to Th17 cells by promoting effector gene expression. J Immunol 190:5972–5980

    Article  PubMed  CAS  Google Scholar 

  38. Huitinga I, van Rooijen N, de Groot CJ, Uitdehaag BM, Dijkstra CD (1990) Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 172:1025–1033

    Article  PubMed  CAS  Google Scholar 

  39. International Multiple Sclerosis Genetics C, Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, et al (2013) Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 45:1353–1360

    Article  CAS  Google Scholar 

  40. Iosue I, Quaranta R, Masciarelli S, Fontemaggi G, Batassa EM et al (2013) Argonaute 2 sustains the gene expression program driving human monocytic differentiation of acute myeloid leukemia cells. Cell Death Dis 4:e926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jablonski KA, Gaudet AD, Amici SA, Popovich PG, Guerau-de-Arellano M (2016) Control of the inflammatory macrophage transcriptional signature by miR-155. PLoS One 11:e0159724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Jagot F, Davoust N (2016) Is it worth considering circulating microRNAs in multiple sclerosis? Front Immunol 7:129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Jevtic B, Timotijevic G, Stanisavljevic S, Momcilovic M, Mostarica Stojkovic M et al (2015) Micro RNA-155 participates in re-activation of encephalitogenic T cells. Biomed Pharmacother 74:206–210

    Article  PubMed  CAS  Google Scholar 

  44. Jiang Z, Jiang JX, Zhang GX (2014) Macrophages: a double-edged sword in experimental autoimmune encephalomyelitis. Immunol Lett 160:17–22

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F et al (2009) MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132:3342–3352

    Article  PubMed  Google Scholar 

  46. Karkeni E, Bonnet L, Marcotorchino J, Tourniaire F, Astier J, et al. (2017) Vitamin D limits inflammation-linked microRNA expression in adipocytes in vitro and in vivo: A new mechanism for the regulation of inflammation by vitamin D. Epigenetics:0

    Google Scholar 

  47. Keller A, Leidinger P, Lange J, Borries A, Schroers H et al (2009) Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS One 4:e7440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Keller A, Leidinger P, Steinmeyer F, Stähler C, Franke A, Hemmrich-Stanisak G, Kappel A, Wright I, Dörr J, Paul F, Diem R, Tocariu-Krick B, Meder B, Backes C, Meese E, Ruprecht K (2014) Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult Scler 20(3):295–303. doi:10.1177/1352458513496343. Epub 2013 Jul 8. PubMed PMID:23836875

    Article  PubMed  CAS  Google Scholar 

  49. Keller A, Leidinger P, Steinmeyer F, Stahler C, Franke A et al (2014) Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult Scler 20:295–303

    Article  PubMed  CAS  Google Scholar 

  50. Kelly B, O’Neill LA (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25:771–784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kin K, Miyagawa S, Fukushima S, Shirakawa Y, Torikai K et al (2012) Tissue- and plasma-specific MicroRNA signatures for atherosclerotic abdominal aortic aneurysm. J Am Heart Assoc 1:e000745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ, van den Berg A (2005) BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207(2):243–249. PubMed PMID:16041695

    Article  PubMed  CAS  Google Scholar 

  53. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lashine YA, Salah S, Aboelenein HR, Abdelaziz AI (2015) Correcting the expression of miRNA-155 represses PP2Ac and enhances the release of IL-2 in PBMCs of juvenile SLE patients. Lupus 24(3):240–247. doi:10.1177/0961203314552117. Epub 2014 September 24. PubMed PMID:25253569

    Article  PubMed  CAS  Google Scholar 

  55. Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13:622–638

    Article  PubMed  CAS  Google Scholar 

  56. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Linnstaedt SD, Gottwein E, Skalsky RL, Luftig MA, Cullen BR (2010) Virally induced cellular microRNA miR-155 plays a key role in B-cell immortalization by Epstein-Barr virus. J Virol 84:11670–11678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Liu G, Abraham E (2013) MicroRNAs in immune response and macrophage polarization. Arterioscler Thromb Vasc Biol 33:170–177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Lopez-Ramirez MA, Wu D, Pryce G, Simpson JE, Reijerkerk A et al (2014) MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation. FASEB J 28:2551–2565

    Article  PubMed  CAS  Google Scholar 

  60. Louafi F, Martinez-Nunez RT, Sanchez-Elsner T (2010) MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta}. J Biol Chem 285:41328–41336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lu C, Huang X, Zhang X, Roensch K, Cao Q et al (2011) miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood 117:4293–4303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lu F, Weidmer A, Liu CG, Volinia S, Croce CM et al (2008) Epstein-Barr virus-induced miR-155 attenuates NF-kappaB signaling and stabilizes latent virus persistence. J Virol 82:10436–10443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Lund C, Nakken KO, Edland A, Celius EG (2014) Multiple sclerosis and seizures: incidence and prevalence over 40 years. Acta Neurol Scand 130:368–373

    Article  PubMed  CAS  Google Scholar 

  64. Mameli G, Arru G, Caggiu E, Niegowska M, Leoni S et al (2016) Natalizumab therapy modulates miR-155, miR-26a and Proinflammatory cytokine expression in MS patients. PLoS One 11:e0157153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Mancardi G, Saccardi R (2008) Autologous haematopoietic stem-cell transplantation in multiple sclerosis. Lancet Neurol 7:626–636

    Article  PubMed  Google Scholar 

  66. Martinelli-Boneschi F, Fenoglio C, Brambilla P, Sorosina M, Giacalone G et al (2012) MicroRNA and mRNA expression profile screening in multiple sclerosis patients to unravel novel pathogenic steps and identify potential biomarkers. Neurosci Lett 508:4–8

    Article  PubMed  CAS  Google Scholar 

  67. Martinez-Nunez RT, Louafi F, Sanchez-Elsner T (2011) The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem 286:1786–1794

    Article  PubMed  CAS  Google Scholar 

  68. McCoy CE, Sheedy FJ, Qualls JE, Doyle SL, Quinn SR et al (2010) IL-10 inhibits miR-155 induction by toll-like receptors. J Biol Chem 285:20492–20498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Michell-Robinson MA, Moore CS, Healy LM, Osso LA, Zorko N et al (2016) Effects of fumarates on circulating and CNS myeloid cells in multiple sclerosis. Ann Clin Transl Neurol 3:27–41

    Article  PubMed  CAS  Google Scholar 

  70. Minagar A, Alexander JS (2003) Blood-brain barrier disruption in multiple sclerosis. Mult Scler 9:540–549

    Article  PubMed  CAS  Google Scholar 

  71. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM et al (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16:1211–1218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Moore CS, Rao VT, Durafourt BA, Bedell BJ, Ludwin SK, Bar-Or A, Antel JP (2013) miR-155 as a multiple sclerosisrelevant regulator of myeloid cell polarization. Ann Neurol 74(5):709–720. doi:10.1002/ana.23967. Epub 2013 September 23. PubMed PMID: 23818336

    Article  PubMed  CAS  Google Scholar 

  73. Moutsianas L, Jostins L, Beecham AH, Dilthey AT, Xifara DK et al (2015) Class II HLA interactions modulate genetic risk for multiple sclerosis. Nat Genet 47:1107–1113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Murugaiyan G, Beynon V, Mittal A, Joller N, Weiner HL (2011) Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J Immunol 187:2213–2221

    Article  PubMed  CAS  Google Scholar 

  75. Mycko MP, Cichalewska M, Cwiklinska H, Selmaj KW (2015) miR-155-3p drives the development of autoimmune demyelination by regulation of heat shock protein 40. J Neurosci 35:16504–16515

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Nikic I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M et al (2011) A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 17:495–499

    Article  PubMed  CAS  Google Scholar 

  77. Noorbakhsh F, Ellestad KK, Maingat F, Warren KG, Han MH et al (2011) Impaired neurosteroid synthesis in multiple sclerosis. Brain 134:2703–2721

    Article  PubMed  PubMed Central  Google Scholar 

  78. O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D (2009) Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A 106:7113–7118

    Article  PubMed  PubMed Central  Google Scholar 

  79. O’Connell RM, Kahn D, Gibson WS, Round JL, Scholz RL et al (2010) MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33:607–619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. O’Connell RM, Rao DS, Baltimore D (2012) microRNA regulation of inflammatory responses. Annu Rev Immunol 30:295–312

    Article  PubMed  CAS  Google Scholar 

  81. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–122

    Article  PubMed  CAS  Google Scholar 

  82. O’Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD et al (2008) Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 205:585–594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 104:1604–1609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. O’Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of toll-like receptor signalling. Nat Rev Immunol 11:163–175

    Article  PubMed  CAS  Google Scholar 

  85. Otaegui D, Baranzini SE, Armananzas R, Calvo B, Munoz-Culla M et al (2009) Differential micro RNA expression in PBMC from multiple sclerosis patients. PLoS One 4:e6309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Paraboschi EM, Solda G, Gemmati D, Orioli E, Zeri G et al (2011) Genetic association and altered gene expression of mir-155 in multiple sclerosis patients. Int J Mol Sci 12:8695–8712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Payne NL, Sun G, McDonald C, Moussa L, Emerson-Webber A et al (2013) Human adipose-derived mesenchymal stem cells engineered to secrete IL-10 inhibit APC function and limit CNS autoimmunity. Brain Behav Immun 30:103–114

    Article  PubMed  CAS  Google Scholar 

  88. Pedersen AW, Holmstrom K, Jensen SS, Fuchs D, Rasmussen S et al (2009) Phenotypic and functional markers for 1alpha,25-dihydroxyvitamin D(3)-modified regulatory dendritic cells. Clin Exp Immunol 157:48–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Pena-Philippides JC, Caballero-Garrido E, Lordkipanidze T, Roitbak T (2016) In vivo inhibition of miR-155 significantly alters post-stroke inflammatory response. J Neuroinflammation 13:287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Pender MP, Burrows SR (2014) Epstein-Barr virus and multiple sclerosis: potential opportunities for immunotherapy. Clin Transl Immunol 3:e27

    Article  CAS  Google Scholar 

  91. Ponomarev ED, Veremeyko T, Weiner HL (2013) MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia 61:91–103

    Article  PubMed  Google Scholar 

  92. Pugliatti M, Rosati G, Carton H, Riise T, Drulovic J et al (2006) The epidemiology of multiple sclerosis in Europe. Eur J Neurol 13:700–722

    Article  PubMed  CAS  Google Scholar 

  93. Pulkkinen KH, Yla-Herttuala S, Levonen AL (2011) Heme oxygenase 1 is induced by miR-155 via reduced BACH1 translation in endothelial cells. Free Radic Biol Med 51:2124–2131

    Article  PubMed  CAS  Google Scholar 

  94. Quinn SR, Mangan NE, Caffrey BE, Gantier MP, Williams BR et al (2014) The role of Ets2 transcription factor in the induction of microRNA-155 (miR-155) by lipopolysaccharide and its targeting by interleukin-10. J Biol Chem 289:4316–4325

    Article  PubMed  CAS  Google Scholar 

  95. Rahadiani N, Takakuwa T, Tresnasari K, Morii E, Aozasa K (2008) Latent membrane protein-1 of Epstein-Barr virus induces the expression of B-cell integration cluster, a precursor form of microRNA-155, in B lymphoma cell lines. Biochem Biophys Res Commun 377:579–583

    Article  PubMed  CAS  Google Scholar 

  96. Rawji KS, Yong VW (2013) The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin Dev Immunol 2013:948976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, Vetrie D, Okkenhaug K, Enright AJ, Dougan G, Turner M, Bradley A (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316(5824):608–611. PubMed PMID:17463290; PubMed Central PMCID:PMC2610435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Ruffell D, Mourkioti F, Gambardella A, Kirstetter P, Lopez RG et al (2009) A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci U S A 106:17475–17480

    Article  PubMed  PubMed Central  Google Scholar 

  99. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222

    Article  PubMed  CAS  Google Scholar 

  100. Samoilova EB, Horton JL, Chen Y (1998) Acceleration of experimental autoimmune encephalomyelitis in interleukin-10-deficient mice: roles of interleukin-10 in disease progression and recovery. Cell Immunol 188:118–124

    Article  PubMed  CAS  Google Scholar 

  101. Sanders KA, Benton MC, Lea RA, Maltby VE, Agland S et al (2016) Next-generation sequencing reveals broad down-regulation of microRNAs in secondary progressive multiple sclerosis CD4+ T cells. Clin Epigenetics 8:87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Schmidt C (2016) Biology: a degenerative affliction. Nature 540:S2–S3

    Article  PubMed  CAS  Google Scholar 

  103. Seddiki N, Brezar V, Ruffin N, Levy Y, Swaminathan S (2014) Role of miR-155 in the regulation of lymphocyte immune function and disease. Immunology 142:32–38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Seeger FH, Zeiher AM, Dimmeler S (2013) MicroRNAs in stem cell function and regenerative therapy of the heart. Arterioscler Thromb Vasc Biol 33:1739–1746

    Article  PubMed  CAS  Google Scholar 

  105. Singh J, Deshpande M, Suhail H, Rattan R, Giri S (2016) Targeted stage-specific inflammatory microRNA profiling in urine during disease progression in experimental autoimmune encephalomyelitis: markers of disease progression and drug response. J Neuroimmune Pharmacol 11:84–97

    Article  PubMed  Google Scholar 

  106. Skalsky RL, Corcoran DL, Gottwein E, Frank CL, Kang D et al (2012) The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog 8:e1002484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. So AY, Garcia-Flores Y, Minisandram A, Martin A, Taganov K et al (2012) Regulation of APC development, immune response, and autoimmunity by Bach1/HO-1 pathway in mice. Blood 120:2428–2437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Sondergaard HB, Hesse D, Krakauer M, Sorensen PS, Sellebjerg F (2013) Differential microRNA expression in blood in multiple sclerosis. Mult Scler 19:1849–1857

    Article  PubMed  CAS  Google Scholar 

  109. Sun HX, Zeng DY, Li RT, Pang RP, Yang H et al (2012) Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension 60:1407–1414

    Article  PubMed  CAS  Google Scholar 

  110. Tannahill GM, Iraci N, Gaude E, Frezza C, Pluchino S (2015) Metabolic reprograming of mononuclear phagocytes in progressive multiple sclerosis. Front Immunol 6:106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Tarassishin L, Loudig O, Bauman A, Shafit-Zagardo B, Suh HS et al (2011) Interferon regulatory factor 3 inhibits astrocyte inflammatory gene expression through suppression of the proinflammatory miR-155 and miR-155*. Glia 59:1911–1922

    Article  PubMed  PubMed Central  Google Scholar 

  112. Teng G, Hakimpour P, Landgraf P, Rice A, Tuschl T et al (2008) MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 28:621–629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C et al (2007) Regulation of the germinal center response by microRNA-155. Science 316:604–608

    Article  PubMed  CAS  Google Scholar 

  114. Thome AD, Harms AS, Volpicelli-Daley LA, Standaert DG (2016) microRNA-155 regulates alpha-Synuclein-induced inflammatory responses in models of Parkinson disease. J Neurosci 36:2383–2390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T (1998) Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol 161:3767–3775

    PubMed  CAS  Google Scholar 

  116. Tsitsiou E, Lindsay MA (2009) microRNAs and the immune response. Curr Opin Pharmacol 9:514–520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Vaknin I, Kunis G, Miller O, Butovsky O, Bukshpan S et al (2011) Excess circulating alternatively activated myeloid (M2) cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis. PLoS One 6:e26921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. van den Berg A, Kroesen BJ, Kooistra K, de Jong D, Briggs J et al (2003) High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer 37:20–28

    Article  PubMed  CAS  Google Scholar 

  119. Vicente R, Noel D, Pers YM, Apparailly F, Jorgensen C (2016) Deregulation and therapeutic potential of microRNAs in arthritic diseases. Nat Rev Rheumatol 12:211–220

    Article  PubMed  CAS  Google Scholar 

  120. Vigorito E, Kohlhaas S, Lu D, Leyland R (2013) miR-155: an ancient regulator of the immune system. Immunol Rev 253:146–157

    Article  PubMed  CAS  Google Scholar 

  121. Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z et al (2007) microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27:847–859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Wang H, Moyano AL, Ma Z, Deng Y, Lin Y, et al. (2017) miR-219 cooperates with miR-338 in myelination and promotes myelin repair in the CNS. Dev cell 40: 566-582 e565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Wang J, Wu M, Wen J, Yang K, Li M et al (2014) MicroRNA-155 induction by Mycobacterium Bovis BCG enhances ROS production through targeting SHIP1. Mol Immunol 62:29–36

    Article  PubMed  CAS  Google Scholar 

  124. Waschbisch A, Atiya M, Linker RA, Potapov S, Schwab S et al (2011) Glatiramer acetate treatment normalizes deregulated microRNA expression in relapsing remitting multiple sclerosis. PLoS One 6:e24604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Wen Y, Zhang X, Dong L, Zhao J, Zhang C et al (2015) Acetylbritannilactone modulates MicroRNA-155-mediated inflammatory response in ischemic cerebral tissues. Mol Med 21:197–209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Wilms H, Sievers J, Rickert U, Rostami-Yazdi M, Mrowietz U et al (2010) Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation 7:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  PubMed  CAS  Google Scholar 

  128. Woodbury ME, Freilich RW, Cheng CJ, Asai H, Ikezu S et al (2015) miR-155 is essential for inflammation-induced hippocampal neurogenic dysfunction. J Neurosci 35:9764–9781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Wu Q, Wang Q, Mao G, Dowling CA, Lundy SK et al (2017) Dimethyl fumarate selectively reduces memory T cells and shifts the balance between Th1/Th17 and Th2 in multiple sclerosis patients. J Immunol 198:3069–3080

    Article  PubMed  CAS  Google Scholar 

  130. Wu XY, Fan WD, Fang R, Wu GF (2014) Regulation of microRNA-155 in endothelial inflammation by targeting nuclear factor (NF)-kappaB P65. J Cell Biochem 115:1928–1936

    PubMed  CAS  Google Scholar 

  131. Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM et al (2014) Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211:1533–1549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Yang Y, Ye Y, Su X, He J, Bai W et al (2017) MSCs-derived exosomes and Neuroinflammation, neurogenesis and therapy of traumatic brain injury. Front Cell Neurosci 11:55

    PubMed  PubMed Central  Google Scholar 

  133. Yin Q, McBride J, Fewell C, Lacey M, Wang X et al (2008) MicroRNA-155 is an Epstein-Barr virus-induced gene that modulates Epstein-Barr virus-regulated gene expression pathways. J Virol 82:5295–5306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Yin Q, Wang X, Roberts C, Flemington EK, Lasky JA (2016) Methylation status and AP1 elements are involved in EBV-mediated miR-155 expression in EBV positive lymphoma cells. Virology 494:158–167

    Article  PubMed  CAS  Google Scholar 

  135. Zhang J, Cheng Y, Cui W, Li M, Li B et al (2014) MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 266:56–63

    Article  PubMed  CAS  Google Scholar 

  136. Zhang J, Vandevenne P, Hamdi H, Van Puyvelde M, Zucchi A et al (2015) Micro-RNA-155-mediated control of heme oxygenase 1 (HO-1) is required for restoring adaptively tolerant CD4+ T-cell function in rodents. Eur J Immunol 45:829–842

    Article  PubMed  CAS  Google Scholar 

  137. Zhang J, Zhang ZG, Lu M, Wang X, Shang X et al (2017) MiR-146a promotes remyelination in a cuprizone model of demyelinating injury. Neuroscience 348:252–263

    Article  PubMed  CAS  Google Scholar 

  138. Zheng B, Yin WN, Suzuki T, Zhang XH, Zhang Y et al (2017) Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Mol Ther 25:1279–1294

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  139. Zhou H, Huang X, Cui H, Luo X, Tang Y et al (2010) miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood 116:5885–5894

    Article  PubMed  CAS  Google Scholar 

  140. Zhu N, Zhang D, Chen S, Liu X, Lin L et al (2011) Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis 215:286–293

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire E. McCoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

McCoy, C.E. (2017). miR-155 Dysregulation and Therapeutic Intervention in Multiple Sclerosis. In: Xu, D. (eds) Regulation of Inflammatory Signaling in Health and Disease. Advances in Experimental Medicine and Biology, vol 1024. Springer, Singapore. https://doi.org/10.1007/978-981-10-5987-2_5

Download citation

Publish with us

Policies and ethics