Skip to main content

Identification Strategies for Bioactive Secondary Metabolites of Fungal Origin

  • Chapter
  • First Online:
Medicinal Plants and Fungi: Recent Advances in Research and Development

Part of the book series: Medicinal and Aromatic Plants of the World ((MAPW,volume 4))

Abstract

In the present review article, we have described several fungi as a promising and evolving source of new and bioactive secondary metabolites for drug discovery processes. Also, the review has outlined isolation and identification strategies of known and novel fungal metabolites from endophytic fungi, fungi isolated from marine sources and extreme environments, etc. The chapter highlights how recent advances in biochemistry, genetics, analytical technologies and bioinformatics have significantly influenced the process of discovery of novel bioactive compounds in fungi. Combination of microfractionation, high-resolution mass spectroscopy and liquid chromatography with emerging technologies such as microfluidics has potential to augment the efficiency of identification procedures for novel bioactive molecules and become effective tools for bioengineers to adapt these microorganisms for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CIEIA:

Competitive inhibition enzyme immunoassay

DAD:

Diode array detector

ECD:

Electrochemical detector

ELS:

Evaporative light scattering

FDA:

Food and drug administration

FT-IR:

Fourier transform infrared spectroscopy

HPLC:

High-performance liquid chromatography

HRESIMS:

High-resolution electrospray ionisation mass spectroscopy

HTS:

High-throughput screening

IR:

Infrared

LC-MS:

Liquid chromatography-mass spectroscopy

MIC:

Minimum inhibitory concentration

MS:

Mass spectroscopy

NMR:

Nuclear magnetic resonance spectroscopy

PCR:

Polymerase chain reaction

PDA:

Photodiode array

QTOF:

Quadrupole time of flight

SPE:

Solid-phase extraction

TLC:

Thin-layer chromatography

UHPLC:

Ultrahigh-performance liquid chromatography

UV:

Ultraviolet

References

  • Akone SH, Mándi A, Kurtán T, Hartmann R, Lin W, Daletos G, Proksch P (2016) Inducing secondary metabolite production by the endophytic fungus Chaetomium sp. through fungal–bacterial co-culture and epigenetic modification. Tetrahedron 72(41):6340–6347. doi:10.1016/j.tet.2016.08.022

    Article  CAS  Google Scholar 

  • Alberti F, Foster GD, Bailey AM (2017) Natural products from filamentous fungi and production by heterologous expression. Appl Microbiol Biotechnol 101(2):493–500. doi:10.1007/s00253-016-8034-2

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Khan AL, Ali L, Rizvi TS, Khan SA, Hussain J, Hamayun M, Al-Harrasi A (2017) Enzyme inhibitory metabolites from endophytic Penicillium citrinum isolated from Boswellia sacra. Arch Microbiol 199(5):691–700. doi:10.1007/s00203-017-1348-3

    Google Scholar 

  • Amend A (2014) From dandruff to deep-sea vents: malassezia-like fungi are ecologically hyper-diverse. PLoS Pathog 10(8):1–4. doi:10.1371/journal.ppat.1004277

    Article  Google Scholar 

  • Andersen B, Dongo A, Pryor BM (2008) Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila. Mycol Res 112(2):241–250. doi:10.1016/j.mycres.2007.09.004

    Article  CAS  PubMed  Google Scholar 

  • Bergmann S, Schumann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3(4):213–217. doi:10.1038/nchembio869

    Article  CAS  PubMed  Google Scholar 

  • Bragulat M, Abarca M, Cabañes F (2001) An easy screening method for fungi producing ochratoxin A in pure culture. Int J Food Microbiol 71(2):139–144. doi:10.1016/S0168-1605(01)00581-5

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites–strategies to activate silent gene clusters. Fungal Genet Biol 48(1):15–22. doi:10.1016/j.fgb.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA, Schuemann J, Bergmann S, Scherlach K, Schroeckh V, Hertweck C (2008) Activation of fungal silent gene clusters: a new avenue to drug discovery. In: Natural compounds as drugs. Birkhäuser Verlag, Basel, pp 1–12

    Google Scholar 

  • Bruschia M, Orlandia M, Rindoneb M, Rindonea B, Saliua F, Suarez-Bertoaa R, Tollpaa EL, Zoiaa L (2010) Biomimetics learning from nature In: Podophyllotoxin and antitumor synthetic aryltetralines. Toward a biomimetic preparation. Intech, Crotia, pp 305–324

    Google Scholar 

  • Bucar F, Wube A, Schmid M (2013) Natural product isolation–how to get from biological material to pure compounds. Nat Prod Rep 30(4):525–545. doi:10.1039/c3np20106f

    Article  CAS  PubMed  Google Scholar 

  • Butler MS (2005) Natural products to drugs: natural product derived compounds in clinical trials. Nat Prod Rep 22(2):162–195. doi:10.1039/B402985M

    Article  CAS  PubMed  Google Scholar 

  • Caruso M, Colombo A, Fedeli L, Pavesi A, Quaroni S, Saracchi M, Ventrella G (2000) Isolation of endophytic fungi and actinomycetes taxane producers. Ann Microbiol 50(1):3–14. doi:

    CAS  Google Scholar 

  • Chen H-J, Awakawa T, Sun J-Y, Wakimoto T, Abe I (2013) Epigenetic modifier-induced biosynthesis of novel fusaric acid derivatives in endophytic fungi from Datura stramonium L. Nat Prod Bioprospect 3(1):20–23. doi:10.1007/s13659-013-0010-2

    Article  CAS  PubMed Central  Google Scholar 

  • Chen S, Wang J, Lin X, Zhao B, Wei X, Li G, Kaliaperumal K, Liao S, Yang B, Zhou X (2016) Chrysamides A− C, three dimeric nitrophenyl trans-epoxyamides produced by the deep-sea-derived fungus Penicillium chrysogenum SCSIO41001. Org Lett 18(15):3650–3653. doi:10.1021/acs.orglett.6b0169

    Article  CAS  PubMed  Google Scholar 

  • Chi Y, Zhao D-L, Zhou D-P (2008) Identification of taxol biosynthesis stage-enriched transcripts in Nodulisporium sylviforme, using suppression subtractive hybridization. World J Microbiol Biotechnol 24(11):2601. doi:10.1007/s11274-008-9783-6

    Article  CAS  Google Scholar 

  • Chiang Y-M, Lee K-H, Sanchez JF, Keller NP, Wang CC (2009) Unlocking fungal cryptic natural products. Nat Prod Commun 4(11):1505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang Y-M, Chang S-L, Oakley BR, Wang CC (2011) Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr Opin Chem Biol 15(1):137–143. doi:10.1016/j.cbpa.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  • Cieśla Ł, Moaddel R (2016) Comparison of analytical techniques for the identification of bioactive compounds from natural products. Nat Prod Rep 33(10):1131–1145. doi:10.1039/c6np00016a

    Article  PubMed  Google Scholar 

  • Crespo G, González-Menéndez V, de la Cruz M, Martín J, Cautain B, Sánchez P, Pérez-Victoria I, Vicente F, Genilloud O, Reyes F (2016) Antifungal long-chain alkenyl sulphates isolated from culture broths of the fungus Chaetopsina sp. Planta Med 83:545–550. doi:10.1055/s-0042-118190

    Article  PubMed  Google Scholar 

  • Davis JM, Giddings JC (1983) Statistical theory of component overlap in multicomponent chromatograms. Anal Chem 55(3):418–424

    Article  CAS  Google Scholar 

  • de Moraes MC, Vanzolini KL, Cardoso CL, Cass QB (2014) New trends in LC protein ligand screening. J Pharm Biomed Anal 87:155–166. doi:10.1016/j.jpba.2013.07.021

    Article  PubMed  Google Scholar 

  • de Moraes MC, Lucia Cardoso C, Seidl C, Moaddel R, Bezerra Cass Q (2016) Targeting anti-cancer active compounds: affinity-based chromatographic assays. Curr Pharm Des 22(39):5976–5987

    Article  PubMed  PubMed Central  Google Scholar 

  • Denis JN, Greene AE, Guenard D, Gueritte-Voegelein F, Mangatal L, Potier P (1988) Highly efficient, practical approach to natural taxol. J Am Chem Soc 110(17):5917–5919

    Article  CAS  Google Scholar 

  • Ding G, Song YC, Chen JR, Xu C, Ge HM, Wang XT, Tan RX (2006) Chaetoglobosin U, a cytochalasan alkaloid from endophytic Chaetomium globosum IFB-E019. J Nat Prod 69(2):302–304. doi:10.1021/np050515+

    Article  CAS  PubMed  Google Scholar 

  • Duarte K, Rocha-Santos TA, Freitas AC, Duarte AC (2012) Analytical techniques for discovery of bioactive compounds from marine fungi. Trac Trend Anal Chem 34:97–110. doi:10.1016/j.trac.2011.10.014

    Article  CAS  Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69(8):1121–1124. doi:10.1021/np060174f

    Article  CAS  PubMed  Google Scholar 

  • Falck D, de Vlieger JS, Niessen WM, Kool J, Honing M, Giera M, Irth H (2010) Development of an online p38α mitogen-activated protein kinase binding assay and integration of LC–HR-MS. Anal Bioanal Chem 398(4):1771–1780. doi:10.1007/s00216-010-4087-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng X, Yu W, Zhou F, Chen J, Shen P (2016) A novel small molecule compound diaporine inhibits breast cancer cell proliferation via promoting ROS generation. Biomed Pharmacother 83:1038–1047. doi:10.1016/j.biopha.2016.08.029

    Article  CAS  PubMed  Google Scholar 

  • Fenial W, Jensen PR, Cheng XC (2000) Halimide, a cytotoxic marine natural product, and derivatives thereof. US Patents 6,069,146. 30 May 2000

    Google Scholar 

  • Flores-Bustamante ZR, Rivera-Orduña FN, Martínez-Cárdenas A, Flores-Cotera LB (2010) Microbial paclitaxel: advances and perspectives. J Antibiot 63(8):460–467. doi:10.1038/ja.2010.83

    Article  CAS  PubMed  Google Scholar 

  • Gamal-Eldeen AM, Abdel-Lateff A, Okino T (2009) Modulation of carcinogen metabolizing enzymes by chromanone A; a new chromone derivative from algicolous marine fungus Penicillium sp. Environ Toxicol Pharmacol 28(3):317–322. doi:10.1016/j.etap.2009.05.010

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Zhang Z, Zhu T, Gu Q, Li D (2015) Penicyclones A–E, antibacterial polyketides from the deep-sea-derived fungus Penicillium sp. F23-2. J Nat Prod 78(11):2699–2703. doi:10.1021/acs.jnatprod.5b00655

    Article  CAS  PubMed  Google Scholar 

  • Hansen ME, Andersen B, Smedsgaard J (2005) Automated and unbiased classification of chemical profiles from fungi using high performance liquid chromatography. J Microbial Meth 61(3):295–304. doi:10.1016/j.mimet.2004.12.005

    Article  CAS  Google Scholar 

  • Hasan S, Ansari MI, Ahmad A, Mishra M (2015) Major bioactive metabolites from marine fungi: a review. Bioinformation 11(4):176–181. doi:10.6026/97320630011176

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105(12):1422–1432. doi:10.1017/S0953756201004725

    Article  Google Scholar 

  • Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 60(1):161–170. doi:10.1007/s13225-013-0228-7

    Article  Google Scholar 

  • Hennion M-C (1999) Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. J Chromatogr A 856(1):3–54. doi:10.1016/S0021-9673(99)00832-8

    Article  CAS  PubMed  Google Scholar 

  • Holton RA (1993) Semi-synthesis of taxane derivatives using metal alkoxides and oxazinones. US Patent 5,254,703. 19 Oct 1993

    Google Scholar 

  • Hong K, Gao A-H, Xie Q-Y, Gao HG, Zhuang L, Lin H-P, Yu H-P, Li J, Yao X-S, Goodfellow M (2009) Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs 7(1):24–44. doi:10.3390/md7010024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingkaninan K, De Best C, Van Der Heijden R, Hofte A, Karabatak B, Irth H, Tjaden U, Van der Greef J, Verpoorte R (2000) High-performance liquid chromatography with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products. J Chromatogr A 872(1):61–73. doi:10.1016/S0021-9673(99)01292-3

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Masubuchi M (2014) Dereplication of microbial extracts and related analytical technologies. J Antibiot 67(5):353–360. doi:10.1038/ja.2014.12

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Odake T, Katoh H, Yamaguchi Y, Aoki M (2011) High-throughput profiling of microbial extracts. J Nat Prod 74(5):983–988. doi:10.1021/np100859a

    Article  CAS  PubMed  Google Scholar 

  • Jaroszewski JW (2005a) Hyphenated NMR methods in natural products research, part 1: direct hyphenation. Planta Med 71(08):691–700. doi:10.1055/s-2005-871298

    Article  CAS  PubMed  Google Scholar 

  • Jaroszewski JW (2005b) Hyphenated NMR methods in natural products research, part 2: HPLC-SPE-NMR and other new trends in NMR hyphenation. Planta Med 71(09):795–802. doi:10.155/s-2005-873114

    Article  CAS  PubMed  Google Scholar 

  • Johnson BM, Nikolic D, Van Breemen RB (2002) Applications of pulsed ultrafiltration-mass spectrometry. Mass Spectrom Rev 21(2):76–86. doi:10.1002/mas.10020

    Article  CAS  PubMed  Google Scholar 

  • Jonker N, Kretschmer A, Kool J, Fernandez A, Kloos D, Krabbe J, Lingeman H, Irth H (2009) Online magnetic bead dynamic protein-affinity selection coupled to LC− MS for the screening of pharmacologically active compounds. Anal Chem 81(11):4263–4270. doi:10.1021/ac9000755

    Article  CAS  PubMed  Google Scholar 

  • Kanoh K, Kohno S, Asari T, Harada T, Katada J, Muramatsu M, Kawashima H, Sekiya H, Uno I (1997) (−)-Phenylahistin: a new mammalian cell cycle inhibitor produced by Aspergillus ustus. Bioorg Med Chem Lett 7(22):2847–2852. doi:10.1016/S0960-894X(97)10104-4

    Article  CAS  Google Scholar 

  • Kaul S, Gupta S, Ahmed M, Dhar MK (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 11(4):487–505. doi:10.1007/s11101-012-9260-6

    Article  CAS  Google Scholar 

  • Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28(7):1208–1228. doi:10.1039/C1NP00008J

    Article  CAS  PubMed  Google Scholar 

  • Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5(3):479–490. doi:10.1038/nprot.2009.233

    Article  CAS  PubMed  Google Scholar 

  • Klitgaard A, Iversen A, Andersen MR, Larsen TO, Frisvad JC, Nielsen KF (2014) Aggressive dereplication using UHPLC–DAD–QTOF: screening extracts for up to 3000 fungal secondary metabolites. Anal Bioanal Chem 406(7):1933–1943. doi:10.1007/s00216-013-7582-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong D-X, Jiang Y-Y, Zhang H-Y (2010) Marine natural products as sources of novel scaffolds: achievement and concern. Drug Discov Today 15:884–886. doi:10.1016/j.drudis.2010.09.002

    Article  PubMed  Google Scholar 

  • Kotz J (2012) Phenotypic screening, take two. SciBX 5(15):380–382. doi:10.1038/scibx.2012.380

    Google Scholar 

  • Kumaran RS, Hur BK (2009) Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol. Biotechnol Appl Biochem 54(1):21–30. doi:10.1042/BA20080110

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107(3):1019–1030. doi:10.1111/j.1365-2672.2009.04285.x

    Article  CAS  PubMed  Google Scholar 

  • Lam KS (2007) New aspects of natural products in drug discovery. Trends Microbiol 15(6):279–289. doi:10.1016/j.tim.2007.04.001

    Article  CAS  PubMed  Google Scholar 

  • Li X, Choi HD, Kang JS, Lee C-O, Son BW (2003) New polyoxygenated farnesylcyclohexenones, deacetoxyyanuthone A and its hydro derivative from the marine-derived fungus Penicillium sp. J Nat Prod 66(11):1499–1500. doi:10.1021/np030231u

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Chen L, Li Z, Ding Z, Xu X (2003) Frontal immunoaffinity chromatography with mass spectrometric detection: a method for finding active compounds from traditional Chinese herbs. Anal Chem 75(16):3994–3998. doi:10.1021/ac034190i

    Article  CAS  PubMed  Google Scholar 

  • Magan N (2007) Fungi in extreme environments. In: The Mycota, vol 4. Environmental and Microbial Relationships, 2nd edn. Springer-Verlag, Berlin Heidelberg, pp 85–103

    Google Scholar 

  • Mayer AM, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, McIntosh JM, Newman DJ, Potts BC, Shuster DE (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31(6):255–265. doi:10.1016/j.tips.2010.02.005

    Article  CAS  PubMed  Google Scholar 

  • Moaddel R, Wainer IW (2009) The preparation and development of cellular membrane affinity chromatography columns. Nat Protoc 4(2):197–205. doi:10.1038/nprot.2008.225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson B, Lloyd GK, Miller BR, Palladino MA, Kiso Y, Hayashi Y, Neuteboom ST (2006) NPI-2358 is a tubulin-depolymerizing agent: in-vitro evidence for activity as a tumor vascular-disrupting agent. Anti-Cancer Drugs 17(1):25–31

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography–UV–mass spectrometry methodology. J Chromatogr A 1002(1):111–136. doi:10.1016/S0021-9673(03)00490-4

    Article  CAS  PubMed  Google Scholar 

  • Ochoa A, Álvarez-Bohórquez E, Castillero E, Olguin LF (2017) Detection of enzyme inhibitors in crude natural extracts using droplet-based microfluidics coupled to HPLC. Anal Chem. doi:10.1021/acs.analchem.6b04988

  • Poole CF (2003) New trends in solid-phase extraction. Trac Trend Anal Chem 22(6):362–373. doi:10.1016/S0165-9936(03)00605-8

    Article  CAS  Google Scholar 

  • Potterat O, Hamburger M (2013) Concepts and technologies for tracking bioactive compounds in natural product extracts: generation of libraries, and hyphenation of analytical processes with bioassays. Nat Prod Rep 30(4):546–564. doi:10.1039/c3np20094a

    Article  CAS  PubMed  Google Scholar 

  • Price AK, Paegel BM (2016) Discovery in droplets. Anal Chem 88(1):339–353. doi:10.1021/acs.analchem.5b04139

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar S (2006) Marine microbial eukaryotic diversity, with particular reference to fungi: lessons from prokaryotes. Indian J Mar Sci 35(4):388–398

    Google Scholar 

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35

    Google Scholar 

  • Rakshith D, Santosh P, Pradeep T, Gurudatt DM, Baker S, Rao HY, Pasha A, Satish S (2016) Application of bioassay-guided fractionation coupled with a molecular approach for the dereplication of antimicrobial metabolites. Chromatographia 79(23–24):1625–1642. doi:10.1007/s10337-016-3188-8

    Article  CAS  Google Scholar 

  • Sakai K, Kinoshita H, Shimizu T, Nihira T (2008) Construction of a citrinin gene cluster expression system in heterologous Aspergillus oryzae. J Biosci Bioeng 106(5):466–472. doi:10.1263/jbb.106.466

    Article  CAS  PubMed  Google Scholar 

  • Sarrut M, D’Attoma A, Heinisch S (2015) Optimization of conditions in on-line comprehensive two-dimensional reversed phase liquid chromatography. Experimental comparison with one-dimensional reversed phase liquid chromatography for the separation of peptides. J Chromatogr A 1421:48–59. doi:10.1016/j.chroma.2015.08.052

    Article  CAS  PubMed  Google Scholar 

  • Schenk T, Breel G, Koevoets P, van Den Berg S, Hogenboom A, Irth H, Tjaden U, van Der Greef J (2003) Screening of natural products extracts for the presence of phosphodiesterase inhibitors using liquid chromatography coupled online to parallel biochemical detection and chemical characterization. J Biomol Screen 8(4):421–429. doi:10.1177/1087057103255973

    Article  CAS  PubMed  Google Scholar 

  • Schneider P, Misiek M, Hoffmeister D (2008) In vivo and in vitro production options for fungal secondary metabolites. Mol Pharm 5(2):234–242. doi:10.1021/mp7001544

    Article  CAS  PubMed  Google Scholar 

  • Scott P, Lawrence J, Van Walbeek W (1970) Detection of mycotoxins by thin-layer chromatography: application to screening of fungal extracts. Appl Microbiol 20(5):839–842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha K, Strobel GA, Shrivastava SP, Gewali MB (2001) Evidence for paclitaxel from three new endophytic fungi of Himalayan yew of Nepal. Planta Med 67(04):374–376. doi:10.1055/s-2001-14307

    Article  CAS  PubMed  Google Scholar 

  • Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 6(9):1656–1664. doi:10.1128/EC.00186-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui AA, Iram F, Siddiqui S, Sahu K (2014) Role of natural products in drug discovery process. Int J Drug Dev Res 6(2):172–204

    CAS  Google Scholar 

  • Siridechakorn I, Yue Z, Mittraphab Y, Lei X, Pudhom K (2017) Identification of spirobisnaphthalene derivatives with anti-tumor activities from the endophytic fungus Rhytidhysteron rufulum AS21B. Bioorg Med Chem. doi:10.1016/j.bmc.2017.02.054

  • Song Y, Dou H, Wang P, Zhao S, Wang T, Gong W, Zhao J, Li E, Tan R, Hou Y (2014) A novel small-molecule compound diaporine A inhibits non-small cell lung cancer growth by regulating miR-99a/mTOR signaling. Cancer Biol Ther 15(10):1423–1430. doi:10.4161/cbt.29925 a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle AA, Stierle DB (2014) Bioactive secondary metabolites from acid mine waste extremophiles. Nat Prod Commun 9(7):1037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–214

    Article  CAS  PubMed  Google Scholar 

  • Stierle DB, Stierle AA, Hobbs JD, Stokken J, Clardy J (2004) Berkeleydione and berkeleytrione, new bioactive metabolites from an acid mine organism. Org Lett 6(6):1049–1052. doi:10.1021/ol049852k

    Article  CAS  PubMed  Google Scholar 

  • Stierle AA, Stierle DB, Kelly K (2006) Berkelic acid, a novel spiroketal with selective anticancer activity from an acid mine waste fungal extremophile. J Org Chem 71(14):5357–5360. doi:10.1021/jo060018d

    Article  CAS  PubMed  Google Scholar 

  • Stoll DR, Carr PW (2016) Two-dimensional liquid chromatography: a state of the art tutorial. ACS Publ Anal Chem. doi:10.1021/acs.analchem.6b03506

  • Stoll DR, Li X, Wang X, Carr PW, Porter SE, Rutan SC (2007) Fast, comprehensive two-dimensional liquid chromatography. J Chromatogr A 1168(1):3–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Takada K, Takemoto Y, Yoshida M, Nogi Y, Okada S, Matsunaga S (2011) Gliotoxin analogues from a marine-derived fungus, Penicillium sp., and their cytotoxic and histone methyltransferase inhibitory activities. J Nat Prod 75(1):111–114. doi:10.1021/np200740e

    Article  PubMed  Google Scholar 

  • Swinney D (2013) Phenotypic vs. target-based drug discovery for first-in-class medicines. Clin Pharmacol Ther 93(4):299–301. doi:10.1038/clpt.2012.236

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Cai S-X, Li D-H, Lin Z-J, Zhu T-J, Fang Y-C, Liu P-P, Gu Q-Q, Zhu W-M (2007) Two new metabolites with cytotoxicities from deep-sea fungus, Aspergillus sydowi YH11-2. Arch Pharm Res 30(9):1051–1054. doi:10.1007/BF02980236

    Article  PubMed  Google Scholar 

  • van Breemen RB, Huang C-R, Nikolic D, Woodbury CP, Zhao Y-Z, Venton DL (1997) Pulsed ultrafiltration mass spectrometry: a new method for screening combinatorial libraries. Anal Chem 69(11):2159–2164

    Article  PubMed  Google Scholar 

  • van Breemen RB, Tao Y, Li W, (2011) Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale). Fitoterapia 82 (1):38-43. doi:10.1016/j.fitote.2010.09.004

  • Wagenaar MM (2008) Pre-fractionated microbial samples–the second generation natural products library at Wyeth. Molecules 13(6):1406–1426. doi:10.3390/molecules13061406

    Article  CAS  PubMed  Google Scholar 

  • Wagenaar MM, Corwin J, Strobel G, Clardy J (2000) Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella. J Nat Prod 63(12):1692–1695. doi:10.1021/np0002942

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li J, Yu S, Ye L, Feng M, Li J (2017) Peniproline A, a new 1-phenylamino-2-pyrrolidone metabolite from the endophytic fungus Penicillium decumbens CP-4. Nat Prod Res 1–6. doi:10.1080/14786419.2017.1290623

  • Wani M, Taylor H, Wall M, Coggon P, McPhail A (1971) Plant antitumor agents: VI. The isolation and structure of taxol, a novel antitumor and antileukemic agent from Taxus brevifolia. J Am Chem Soc 18(3):2325–2327. doi:

    Article  Google Scholar 

  • Watts KR, Ratnam J, Ang K-H, Tenney K, Compton JE, McKerrow J, Crews P (2010) Assessing the trypanocidal potential of natural and semi-synthetic diketopiperazines from two deep water marine-derived fungi. Bioorg Med Chem 18(7):2566–2574. doi:10.1016/j.bmc.2010.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller MG (2012) A unifying review of bioassay-guided fractionation, effect-directed analysis and related techniques. Sensors 12(7):9181–9209. doi:10.3390/s120709181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams GJ (2013) Engineering polyketide synthases and nonribosomal peptide synthetases. Curr Opin Struct Biol 23(4):603–612. doi:10.1016/j.sbi.2013.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfender J-L (2009) HPLC in natural product analysis: the detection issue. Planta Med 75(07):719–734. doi:10.1055/s-0028-1088393

    Article  CAS  PubMed  Google Scholar 

  • Wolfender J-L, Queiroz EF, Hostettmann K (2006) The importance of hyphenated techniques in the discovery of new lead compounds from nature. Expert Opin Drug Discovery 1(3):237–260. doi:10.1517/17460441.1.3.237

    Article  CAS  Google Scholar 

  • Wu HC, Ge HM, Zang LY, Bei YC, Niu ZY, Wei W, Feng XJ, Ding S, Ng SW, Shen PP (2014) Diaporine, a novel endophyte-derived regulator of macrophage differentiation. Org Biomol Chem 12(34):6545–6548. doi:10.1039/c4ob01123f

    Article  CAS  PubMed  Google Scholar 

  • Wubshet SG, Nyberg NT, Tejesvi MV, Pirttilä AM, Kajula M, Mattila S, Staerk D (2013) Targeting high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance analysis with high-resolution radical scavenging profiles—bioactive secondary metabolites from the endophytic fungus Penicillium namyslowskii. J Chromatogr A 1302:34–39. doi:10.1016/j.chroma.2013.05.032

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Liang Q, Wang M, Jeffries C, Smithson D, Tu Y, Boulos N, Jacob MR, Shelat AA, Wu Y (2014a) UPLC-MS-ELSD-PDA as a powerful dereplication tool to facilitate compound identification from small molecule natural product libraries. J Nat Prod 77(4):902–909. doi:10.1021/np4009706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X-L, Huang L, Ruan X-L (2014b) Epigenetic modifiers alter the secondary metabolite composition of a plant endophytic fungus, Pestalotiopsis crassiuscula obtained from the leaves of Fragaria chiloensis. J Asian Nat Prod Res 16(4):412–417. doi:10.1080/10286020.2014.881356

    Article  CAS  PubMed  Google Scholar 

  • Yasuda M, Wilson D, Fugmann S, Moaddel R (2011) The synthesis and characterization of SIRT6 protein coated magnetic beads: identification of a novel inhibitor of SIRT6 deacetylase from medicinal plant extracts. Anal Chem 83(19):7400–7407. doi:10.1021/ac201403y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh H-H, Ahuja M, Chiang Y-M, Oakley CE, Moore S, Yoon O, Hajovsky H, Bok J-W, Keller NP, Wang CC (2016) Resistance gene-guided genome mining: serial promoter exchanges in Aspergillus nidulans reveal the biosynthetic pathway for fellutamide B, a proteasome inhibitor. ACS Chem Biol 11(8):2275–2284. doi:10.1021/acschembio.6b00213

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Zhou P-P, Yu L-J (2009) An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr Microbiol 59(3):227–232. doi:10.1007/s00284-008-9270-1

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini-Rev Med Chem 11(2):159–168. doi:10.2174/138955711794519492

    Article  CAS  PubMed  Google Scholar 

  • Zhuo R, Liu H, Liu N, Wang Y (2016) Ligand fishing: a remarkable strategy for discovering bioactive compounds from complex mixture of natural products. Molecules 21(11):1515. doi:10.3390/molecules21111516

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmail Hakkı Akgün .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akgün, İ.H., Vardar-Sukan, F. (2017). Identification Strategies for Bioactive Secondary Metabolites of Fungal Origin. In: Agrawal, D., Tsay, HS., Shyur, LF., Wu, YC., Wang, SY. (eds) Medicinal Plants and Fungi: Recent Advances in Research and Development. Medicinal and Aromatic Plants of the World, vol 4. Springer, Singapore. https://doi.org/10.1007/978-981-10-5978-0_16

Download citation

Publish with us

Policies and ethics