Skip to main content

Photoirradiation and Microwave Irradiation NMR Spectroscopy

  • Chapter
  • First Online:
Experimental Approaches of NMR Spectroscopy

Abstract

In situ photoirradiation solid-state nuclear magnetic resonance (NMR) spectroscopy is designed for optical irradiation from the top part of a zirconia rotor through a glass cap, which makes it possible to efficiently irradiate the inside of the rotor. This experimental method has made it possible to observe photo-intermediates of sensory rhodopsins, such as sensory rhodopsin I (SRI) and sensory rhodopsin II (SRII), and bacteriorhodopsin (bR) Y185F mutant. In SRI, green light generates M-intermediates, which exhibit positive phototaxis, while blue light generates P-intermediates, which exhibit negative phototaxis. In SRII, green light generates M-intermediates and blue light generates O-intermediates. In Y185F-bR, O-intermediates were first observed using solid-state NMR spectroscopy. The microwave irradiation NMR spectrometer was developed in-house by modification of a commercial NMR spectrometer. A flat long copper ribbon was used as a capacitor and a half turn of copper ribbon at the edge was used as an inductor for the microwave resonance circuit, which was coaxially inserted inside the radiofrequency induction coil and allowed NMR signals to be observed under microwave irradiation conditions. The temperature of N-(4-methoxybenzylidene)-4-butylaniline (MBBA) during microwave irradiation was estimated by measuring the temperature-dependent chemical shifts, whereby different protons were found to indicate significantly different temperatures in the molecule. Liquid crystalline-isotropic phase correlation 2D NMR spectra were observed using pulsed microwave irradiation for rapid temperature jump experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, S.O., de Groot, H.J.M., Gebhard, R., Courtin, J., Lugtenburg, J., Herzfeld, J., Griffin, R.G.: Structure and protein environment of the retinal chromophore in ligand- and dark-adapted bacteriorhodopsin studied by solid-state NMR. Biochemistry 28, 8897–8904 (1989)

    Article  CAS  Google Scholar 

  2. McDermott, A.E., Thompson, L.K., Winkel, C., Farrar, M.R., Pelletier, S., Lugtenburg, J., Herzfeld, J., Griffin, R.G.: Mechanism of proton pumping in bacteriorhodopsin by solid-state NMR: the protonation state of tyrosine in the light-adapted and M state. Biochemistry 30, 8366–8371 (1991)

    Article  CAS  Google Scholar 

  3. Farrar, M.R., Lakshmi, K.V., Smith, S.O., Brown, R.S., Raap, J., Lugtenburg, J., Griffin, R.G., Herzfeld, J.: Solid state NMR study of [ε-13C]Lys-bacteriorhodopsin: schiff base photoisomerization. Biophys. J. 65, 310–315 (1993)

    Google Scholar 

  4. Lakshmi, K.V., Farrar, M.R., Raap, J., Lugtenburg, J., Griffin, R.G., Herzfeld, J.: Solid state 13C and 15N NMR investigations of the N intermediate of bacteriorhodopsin. Biochemistry 33, 8853–8857 (1994)

    Article  CAS  Google Scholar 

  5. Feng, X., Verdegem, P.J.E., Eden, M., Sandstrom, D., Lee, Y.K., Bovee-Geurts, P.H.M., de Grip, W.J., Lugtenburg, J., de Groot, H.J.M., Levitt, M.H.: Determination of a molecular torsional angle in the metarhodopsin-I photointermediate of rhodopsin by double-quantum solid-state NMR. J. Biomol. NMR 16, 1–8 (2000)

    Article  CAS  Google Scholar 

  6. Crocker, E., Eilers, M., Ahuja, S., Hornak, V., Hirshfeld, A., Sheves, M., Smith, S.O.: Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin. J. Mol. Biol. 357, 163–172 (2006)

    Article  CAS  Google Scholar 

  7. Ahuja, S., Crocker, E., Eilers, M., Hornak, V., Hirshfeld, A., Ziliox, M., Syrett, N., Reeves, P.J., Khorana, H.G., Sheves, M., Smith, S.O.: Location of the retinal chromophore in the Activated state of rhodopsin. J. Biol. Chem. 284, 10190–10201 (2009)

    Article  CAS  Google Scholar 

  8. Hu, J.G., Sun, B.Q., Bizounok, M., Hatcher, M.E., Lansing, J.C., Raap, J., Verdegen, P.J.E., Lugtenburg, J., Griffin, R.G., Herzfeld, J.: Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR study. Biochemistry 37, 8088–8096 (1998)

    Article  CAS  Google Scholar 

  9. Petkova, A.T., Hatanaka, M., Jaroniec, C.P., Hu, J.G., Belenky, M., Verhoeven, M., Lugtenburg, J., Griffin, R.G., Herzfeld, J.: Tryptophan interaction in bacteriorhodopsin: a heteronuclear solid-state NMR study. Biochemistry 41, 2429–2437 (2002)

    Article  CAS  Google Scholar 

  10. Hu, J.G., Sun, B.Q., Petkova, A.T., Griffin, R.G., Herzfeld, J.: The predischarge chromophore in bacteriorhodopsin: a 15N solid-state NMR study of the L photointermediate. Biochemistry 36, 9316–9322 (1997)

    Article  CAS  Google Scholar 

  11. Mak-Jurkauskas, M.L., Bajaj, V.S., Hornstein, M.K., Blenky, M., Griffin, R.G., Herzfeld, J.: Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR. Proc. Natl. Acad. Sci. U S A 105, 883–888 (2008)

    Article  CAS  Google Scholar 

  12. Bajaj, V.S., Mak-Jurkauskas, M.L., Belenky, M., Herzfeld, J., Griffin, R.G.: Functional and shunt state of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR. Proc. Natl. Acad. Sci. U S A 106, 9244–9249 (2009)

    Article  CAS  Google Scholar 

  13. Becker-Baldus, J., Bamann, C., Saxena, K., Gustmann, H., Brown, L.J., Brown, R.C.D., Reiter, C., Bamberg, E., Wachtveitl, J., Schwalbe, H., Glaubitz, C.: Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy. Proc. Natl. Acad. Sci. U S A 112, 9896–9901 (2015)

    Article  CAS  Google Scholar 

  14. Kawamura, I., Kihara, N., Ohmine, M., Nishimura, K., Tuzi, S., Saitô, H., Naito, A.: Solid-state NMR studies of two backbone conformations at Tyr185 as a function of retinal configurations in the dark, light, and pressure adapted bacteriorhodopsin. J. Am. Chem. Soc. 129, 1016–1017 (2007)

    Article  CAS  Google Scholar 

  15. Tomonaga, Y., Hidaka, T., Kawamura, I., Nishio, T., Ohsawa, K., Okitsu, T., Wada, A., Sudo, Y., Kamo, N., Ramamoorthy, A., Naito, A.: An active photoreceptor intermediate revealed by in situ photoirradiated solid-state NMR spectroscopy. Biophys. J. 101, L50–L52 (2011)

    Article  CAS  Google Scholar 

  16. Yomoda, H., Makino, Y., Tomonaga, Y., Hidaka, T., Kawamura, I., Okitsu, T., Wada, A., Sudo, Y., Naito, A.: Color-discriminating retinal configurations of sensory rhodopsin I by photo-irradiation solid-state NMR spectroscopy. Angew. Chem. Int. Ed. 53, 6960–6964 (2014)

    Article  CAS  Google Scholar 

  17. Naito, A., Kawamura, I.: Photoactivated structural changes in photoreceptor membrane proteins as revealed by in situ photoirradiation solid-state NMR spectroscopy. In: Separovic, F., Naito, A. (eds.) Advances in Biological Solid-State NMR: Proteins and Membrane Active Peptides, pp. 387–404. Royal Society of Chemistry, London (2014)

    Chapter  Google Scholar 

  18. Naito, A., Kawamura, I., Javkhlantugs, N.: Recent solid-state NMR studies of membrane-bound peptides and proteins. Annu. Rep. NMR Spectrosc. 86, 333–411 (2015)

    Article  CAS  Google Scholar 

  19. Oshima, K., Shigeta, A., Makino, Y., Kawamura, I., Okitsu, T., Wada, A., Tuzi, S., Iwasa, T., Naito, A.: Characterization of photo-intermediates in the photo-reaction pathways of a bacteriorhodopsin Y185F mutant using in situ photo-irradiation solid-state NMR spectroscopy. Photochem. Photobiol. Sci. 14, 1694–1702 (2015)

    Article  CAS  Google Scholar 

  20. Gedye, R., Smith, F., Westaway, K., All, H., Baldisers, L., Laberge, L., Rousell, J.: The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett. 27, 279–282 (1986)

    Article  CAS  Google Scholar 

  21. Giguere, R.J., Bray, T.L., Duncan, S.M., Majetich, G.: Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett. 27, 4945–4948 (1986)

    Article  CAS  Google Scholar 

  22. Adam, D.: Out of the kitchen. Nature 421, 571–572 (2003)

    Article  CAS  Google Scholar 

  23. Perreux, L., Loupy, A.: Atentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron 57, 9199–9223 (2001)

    Article  CAS  Google Scholar 

  24. Lidström, P., Tiemey, J., Wathey, B., Westman, J.: Microwave assisted organic synthesis. Tetrahedron 57, 9235–9283 (2001)

    Google Scholar 

  25. Bogdal, D., Lukasiewicz, M., Pielichowski, J., Miciak, A., Begdarz, Sz.: Microwave-assisted oxidation of alcohols using magtrieve. Tetrahedron 59, 649–653 (2003)

    Google Scholar 

  26. Kappe, G.O.: Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 43, 6250–6284 (2004)

    Article  CAS  Google Scholar 

  27. Yoshimura, Y., Shimizu, H., Hinou, H., Nishimura, S.-I.: A novel glycosylation concept: microwave-assisted acetal-exchange type glycosylation from methyl glycosides as donors. Tetrahedron Lett. 46, 4701–4705 (2005)

    Article  CAS  Google Scholar 

  28. Shimizu, H., Yoshimura, Y., Hinou, H., Nishimura, S.-I.: A new glycosylation method part 3: study of microwave effects at low temperatures to control reaction pathways and reduce byproducts. Tetrahedron 64, 10091–10096 (2008)

    Google Scholar 

  29. Kappe, C.O., Pieber, B., Dallinger, D.: Microwave effect in organic synthesis: myth or reality. Angew. Chem. Int. Ed. 52, 1088–1094 (2013)

    Article  CAS  Google Scholar 

  30. Hoogenboom, R., Wiesbrock, F., Huang, H., Leenen, M.A.M., Thijis, H.M.L., van Nispen, S.F.G.M., van der Loop, M., Fustin, C.-A., Jonas, A.M., Gohy, J.-F., Schubert, U.S.: Microwave-assisted cationic ring-opening polymerization of 2-oxazolines: a powerful method for the synthesis of amphiphilic triblock copolymers. Maclomolecules 39, 4719–4725 (2006)

    Article  CAS  Google Scholar 

  31. Iwamura, T., Ashizawa, K., Sakaguchi, M.: Efficient and echo-friendly anionic polymerization of acrylamide under microwave irradiation and hydrolysis of the obtained polymers by microwave irradiation. Macromolecules 42, 5001–5006 (2009)

    Article  CAS  Google Scholar 

  32. Kajiwara, Y., Nagai, A., Chujo, Y.: Microwave-assisted synthesis of poly(2-hydroxyethyl methacrylate)(HEMA)/Silica hybrid using in situ polymerization method. Polymer J. 41, 1080–1084 (2009)

    Article  CAS  Google Scholar 

  33. Yamada, S., Takasu, A., Takayama, S., Kawamura, K.: Microwave-assisted solution polycondensation of L-lactic acid using a Dean-Stark apparatus for a non-thermal microwave polymerization effect induced by the electric field. Polym. Chem. 5, 5283–5288 (2014)

    Google Scholar 

  34. Pramanik, B.N., Mirza, U.A., Ing, Y.H., Liu, Y.-H., Bartner, P.L., Weber, P.C., Bose, A.K.: Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: a new approach to protein digestion in minutes. Protein Sci. 11, 2676–2687 (2002)

    Article  CAS  Google Scholar 

  35. Huang, W., Xia, Y.-M., Gao, H., Fang, T.-J., Wang, Y., Fang, Y.J.: Enzymatic esterification between n-alcohol homologs and n-caprylic acid in non-aqueous medium under microwave irradiation. Mol. Catal. 35, 115–116 (2005)

    Google Scholar 

  36. Herrero, M.A., Kremsner, J.M., Kappe, C.O.: Nonthermal microwave effects revised: on the importance of internal temperature monitoring and agitation in microwave chemistry. J. Org. Chem. 73, 36–49 (2008)

    Article  CAS  Google Scholar 

  37. Obermayer, D., Gutmann, B., Kappe, C.O.: Microwave chemistry in silicon carbide reaction vials: separating thermal from nonthermal effects. Angew. Chem. Int. Ed. 48, 8321–8324 (2009)

    Article  CAS  Google Scholar 

  38. Tanaka, M., Sato, M.: Microwave heating of water, ice, and saline solution: molecular dynamic study. J. Chem. Phys. 126, 034509 (2007)

    Article  Google Scholar 

  39. Kanno, M., Nakamura, K., Kanai, K., Hoki, K., Kono, H., Tanaka, M.: Theoretical verification of nonthermal microwave effects on intramolecular reactions. J. Phys. Chem. A 116, 2177–2183 (2012)

    Article  CAS  Google Scholar 

  40. Tsukahara, Y., Higashi, A., Yamauchi, T., Nakamura, T., Yasuda, M., Baba, A., Wada, Y.: In situ observation of nonequilibrium local heating as an origin of spherical effect of microwave on chemistry. J. Phys. Chem. C 114, 8965–8970 (2010)

    Article  CAS  Google Scholar 

  41. Tasei, Y., Yamakami, T., Kawamura, I., Fujito, T., Ushida, K., Sato, M., Naito, A.: Mechanism for microwave heating of 1-(4′-cyanophenyl)-4-propylcyclohexane characterized by in situ microwave irradiation NMR spectroscopy. J. Magn. Reson. 254, 27–34 (2015)

    Article  CAS  Google Scholar 

  42. Tasei, Y., Tanigawa, F., Kawamura, I., Fujito, T., Sato, M., Naito, A.: The microwave heating mechanism of N-(4-methoxybenzyliden)-4-butylaniline in liquid crystalline and isotropic phases as determined using in situ microwave irradiation NMR spectroscopy. Phys. Chem. Chem. Phys. 17, 9082–9089 (2015)

    Article  CAS  Google Scholar 

  43. Naito, A., Imanari, M., Akasaka, K.: Separation of local magnetic fields of individual protons in nematic phase by state-correlated 2D NMR spectroscopy. J. Magn. Reson. 92, 85–93 (1991)

    CAS  Google Scholar 

  44. Naito, A., Imanari, M., Akasaka, K.: State-correlated two-dimensional NMR spectroscopy: separation of local dipolar fields of protons in nematic phase of 4′-methoxybenzylidene-4-acetoxyaniline. J. Chem. Phys. 105, 4502–4510 (1996)

    Article  Google Scholar 

  45. Akasaka, K., Kimura, M., Naito, A., Kawahara, H., Imanari, M.: Local order, conformation, and interaction in nematic 4-(n-pentyloxy-4′-cyanobiphenyl and its one-to-one mixture with 1-(4′-cyanophenyl)-4-propylcyclohexane. A study by state-correlated 1H two-dimensional NMR spectroscopy. J. Phys. Chem. 99, 9523–9529 (1995)

    Article  CAS  Google Scholar 

  46. Naito, A., Ramamoorthy, A.: Structural studies of liquid crystalline materials using a solid state NMR technique. Thermotropic Liquid Crystal: Recent Advances, pp. 85–116, Springer, Berlin (2007)

    Google Scholar 

  47. Naito, A., Tasei, Y.: Separation of local fields of individual protons in nematic phase of 4′-ethoxybenzylidene-4-n-butylaniline by microwave heating 2D NMR spectroscopy. Mater. Sci. Technol. (MS&T) 2010, 2886–2894 (2010)

    Google Scholar 

  48. Akasaka, K., Naito, A., Imanari, M.: Novel method for NMR spectral correlation between the native and the denatured states of a protein. Application to ribonuclease A. J. Am. Chem. Soc. 113, 4688–4689 (1991)

    Article  CAS  Google Scholar 

  49. Spudich, J.L., Bogomolni, R.A.: Mechanism of colour discrimination by a bacterial sensory rhodopsin. Nature 312, 509–513 (1984)

    Article  CAS  Google Scholar 

  50. Suzuki, D., Irieda, H., Honma, M., Kawagishi, I., Sudo, Y.: Phototactic and chemotactic signal transduction by transmembrane receptors and transducers in microorganisms. Sensors 10, 4010–4039 (2010)

    Article  CAS  Google Scholar 

  51. Chen, X., Spudich, J.L.: Demonstration of 2:2 stoichiometry in the functional SRI-HtrI signaling complex in Halobacterium membrane by gene fusion analysis. Biochemistry 41, 3891–3896 (2002)

    Article  CAS  Google Scholar 

  52. Szundi, I., Swartz, T.E., Bogomoni, R.A.: Multicolored protein conformation state in the photocycle of transducer-free sensory rhodopsin-I. Biophys. J. 80, 469–479 (2001)

    Article  CAS  Google Scholar 

  53. Kitajima-Ihara, T., Furutani, Y., Suzuki, D., Ihara, K., Kandori, H., Honma, M., Sudo, Y.: Salinibacter sensory rhodopsin: sensory rhodopsin I-like protein from a eubacterium. J. Biol. Chem. 283, 23533–23541 (2008)

    Article  CAS  Google Scholar 

  54. Suzuki, D., Sudo, Y., Furutani, Y., Takahashi, H., Honnma, M., Kandori, H.: Structural changes of salinibacter sensory rhodopsin I upon formation of the K and M photointermediates. Biochemistry 47, 12750–12759 (2008)

    Google Scholar 

  55. Harbison, G.S., Smith, S.O., Pardoen, J.A., Mudder, P.P.J., Lugtenburg, J., Herzfeld, J., Mishien, G.S., Griffin, R.G.: Solid-state 13C NMR studies of retinal in bacteriorhodopsin. Biochemistry 23, 2662–2687 (1984)

    Google Scholar 

  56. Sineshchekov, O.A., Sasaki, J., Philip, S.B.J., Spudich, J.L.: A Schiff base connectivity switch in sensory rhodopsin signaling. Proc. Natl. Acad. Sci. U S A 105, 16159–16164 (2008)

    Article  CAS  Google Scholar 

  57. Spudich, J.L., Luecke, H.: Sensory rhodopsin II: functional insight from structure. Curr. Opin. Struct. Biol. 12, 540–546 (2002)

    Article  CAS  Google Scholar 

  58. Kamo, N., Shimono, K., Iwamoto, M., Sudo, Y.: Photochemistry and photoinduced proton-transfer by pharaonis phoborhodopsin. Biochemistry (Mosc.) 66, 1277–1282 (2001)

    Article  CAS  Google Scholar 

  59. Gordelly, V.L., Labahn, J., Moukhametzianov, R., Efremov, R., Granzin, J., Schleslnger, R., Buldt, G., Sevopol, T., Scheldlg, A.J., Klarr, J.P., Engelhart, M.: Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419, 484–487 (2002)

    Article  Google Scholar 

  60. Shimono, K., Hayashi, T., Ikehara, Y., Sudo, Y., Iwamoto, M., Kamo, N.: Importance of the broad regional interaction for spectral tuning in Natronobacterium pharaonic phoborhodopsin (sensory rhodopsin II). J. Biol. Chem. 278, 23882–23889 (2003)

    Article  CAS  Google Scholar 

  61. Sudo, Y., Furutani, Y., Kandori, H., Spudich, J.L.: Functional importance of the interhelical hydrogen bond between Thr204 and Tyr174 of sensory rhodopsin II and its alteration during the signalling process. J. Biol. Chem. 281, 34239–34245 (2006)

    Article  CAS  Google Scholar 

  62. Sudo, Y., Furutani, Y., Wada, A., Ito, M., Kamo, N., Kandori, H.: Steric constraint in the primary photoproduct of an archaeal rhodopsin from regiospecific perturbation of C-D stretching vibration of the retinyl chromophore. J. Am. Chem. Soc. 127, 16036–16037 (2005)

    Article  CAS  Google Scholar 

  63. Furutani, Y., Kamada, K., Sudo, Y., Shimono, K., Kamo, N., Kandori, H.: Structural changes of the complex between pharaonic phoborhodopsin and its cognate transducer upon formation of the M photointermediate. Biochemistry 44, 2909–2915 (2005)

    Article  CAS  Google Scholar 

  64. Wagner, A.-A., Chzhov, I., Engelhard, M., Steinhoff, H.-J.: Time-resolved detection of transient movement of helix F in spin-labelled pharaonic sensory rhodopsin II. J. Mol. Biol. 301, 881–891 (2000)

    Article  Google Scholar 

  65. Spudih, J.I.: Variations on a molecular switch: transport and sensory signalling by archaeal rhodopsin. Mol. Mictrobiol. 28, 1051–1058 (1998)

    Article  Google Scholar 

  66. Yoshida, H., Sudo, Y., Shimono, K., Iwamoto, M., Kamo, N.: Transient movement of helix F revealed by photo-induced inactivation by reaction of a bulky SH-regent to cysteine-introduced pharaonis phoborhodopsin (sensory rhodopsin II). Photochem. Photobiol. Sci. 3, 537–542 (2004)

    Article  CAS  Google Scholar 

  67. Moukhametzianov, R., Klare, J.P., Efremov, R., Baeken, C., Göppner, A., Labahn, J., Engelhard, M., Büldt, G., Gordeliy, V.I.: Development of the signal in sensory rhodopsin and its transducer to the cognate transducer. Nature 440, 115–119 (2006)

    Article  CAS  Google Scholar 

  68. Etzkom, M., Seidel, K., Li, L., Martell, S., Geyer, M., Engelhard, M., Baldus, M.: Complex formation and light activation in membrane-embedded sensory rhodopsin II as seen by solid-state NMR spectroscopy. Structure 18, 293–300 (2010)

    Article  Google Scholar 

  69. Kawamura, I., Yoshida, H., Ikeda, Y., Yamaguchi, S., Tuzi, S., Saitô, H., Kamo, N., Naito, A.: Dynamic change of phoborhodopsin and transducer by activation: study using D75N mutant of the receptor by site-directed solid-state 13C NMR. Photochem. Photobiol. 84, 921–930 (2008)

    Google Scholar 

  70. Roy, S., Kikukawa, T., Sharma, P., Ksmo, N.: All-optical switching in pharaonic phoborhodopsin protein molecules. IEEE Trans. Nanobiosci. 5, 178–187 (2006)

    Article  Google Scholar 

  71. Tateishi, Y., Abe, T., Tamogami, J., Nakano, Y., Kikukawa, T., Kamo, N., Unno, M.: Spectroscopic evidence for the formation of an N intermediate during the photocycle of sensory rhodopsin II (phoborhodopsin) from Natronobacterium pharaonic. Biochemistry 50, 2135–2143 (2011)

    Article  CAS  Google Scholar 

  72. Lanyi, J.K.: Proton transfers in the bacteriorhodopsin photocycle. Biochim. Biophys. Acta 1757, 1012–1018 (2006)

    Article  CAS  Google Scholar 

  73. Lanyi, J.K.: Molecular mechanism of ion transport in bacteriorhodopsin: insights from crystallographic, spectroscopic, kinetic, and mutational studies. J. Phys. Chem. B 48, 11441–11448 (2000)

    Article  Google Scholar 

  74. Morgan, J.E., Vakkasoglu, A.S., Lanyi, J.K., Lugtenburg, J., Gennis, R.B., Maeda, G.A.: Structure changes upon deprotonation of the proton release group in the bacteriorhodopsin photocycle. Biophys. J. 103, 444–452 (2012)

    Article  CAS  Google Scholar 

  75. Nango, E., Royant, A., Kubo, M., Nakane, T., Wlckstrand, C., Kimura, T., Tanaka, T., Tono, K., Soug, C., Tanaka, R., et al.: A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354, 1552–1557 (2016)

    Article  CAS  Google Scholar 

  76. Duriach, M., Marti, T., Khorana, H.G., Rothschild, K.J.: UV-visible spectroscopy of bacteriorhodopsin mutants: substitution of Arg-82, Asp-85, Tyr-185, and Asp-212 results in abnormal light-dark adaptation. Proc. Natl. Acad. Sci. U S A 87, 9873–9877 (1990)

    Article  Google Scholar 

  77. Sonar, S., Krebs, M.P., Khorana, H.G., Rothchild, K.J.: Static and time-resolved absorption spectroscopy of the bacteriorhodopsin mutant Tyr185 → Phe: evidence for an equilibrium between bR570 and O-like species. Biochemistry 32, 223–2271 (1993)

    Google Scholar 

  78. Rath, P., Krebs, M.P., He, Y., Khorana, H.G., Rothchild, K.J.: Fourier transform raman spectroscopy of the bacteriorhodopsin mutant Tyr185 → Phe: formation of a stable O-like species during light adaptation and detection of its transient N-like photoproduct. Biochemistry 32, 2272–2281 (1993)

    Article  CAS  Google Scholar 

  79. Richter, H.-T., Needleman, R., Lanyi, J.K.: Perturbed interaction between residues 85 and 204 in Tyr185 → Phe and Asp85 → Glu bacteriorhodopsin. Biophys. J. 71, 3392–3398 (1996)

    Google Scholar 

  80. Iwasa, T., Tokunaga, F., Yoshizawa, T.: Photochemical reaction of 13-cis-bacteriorhodopsin studied by low temperature spectroscopy. Photochem. Photobiol. 33, 539–545 (1981)

    Article  CAS  Google Scholar 

  81. Roepe, P.D., Ahl, P.L., Herzfeld, J., Lugtenburg, J., Rothchild, K.J.: Tyrosine protonation changes in bacteriorhodopsin, a Fourier transform infrared study of BR648 and its primary photoproduct. J. Biol. Chem. 263, 5110–5117 (1988)

    CAS  Google Scholar 

  82. Van Greet, A.L.: Calbration of the methanol and glycol nuclear magnetic resonance thermometers with a static thermistor probe. Anal. Chem. 40, 2227–2229 (1968)

    Article  Google Scholar 

  83. Van Greet, A.L.: Calibration of methanol nuclear magnetic resonance thermometer at low temperature. Anal. Chem. 42, 679–680 (1970)

    Article  Google Scholar 

  84. Bielecki, A., Burum, D.P.: Temperature dependence of 207Pb MAS spectra of solid lead nitrate. An accurate, sensitive thermometer for variable-temperature MAS. J. Magn. Reson. A 116, 215–220 (1995)

    Article  CAS  Google Scholar 

  85. Zuo, C.S., Metz, K.R., Sun, Y., Sherry, A.D.: NMR temperature measurements using a paramagnetic Lanthanide complex. J. Magn. Reson. 133, 53–60 (1998)

    Article  CAS  Google Scholar 

  86. Schuff, N.: Haeberlen, 2D Correlation spectroscopy in homonuclear dipolar-coupled solids. J. Magn. Reson. 52, 267–281 (1983)

    CAS  Google Scholar 

  87. Bodenhausen, G., Freeman, R., Morris, G.A., Turner, D.L.: NMR spectra of some simple spin systems studied by two-dimensional Fourier transformation of spin echoes. J. Magn. Reson. 31, 75–95 (1978)

    CAS  Google Scholar 

  88. Prasad, J.S.: Orientational order parameters and conformation of nematic p-ethoxybenzyliden-p-n-butylaniline. J. Chem. Phys. 65, 941 (1976)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants-in-aid for Scientific Research in an Innovative Area (16H00756 to AN and 16H00828 to IK), and by a grant-in-aid for Scientific Research (C) (15K06963 to AN) and Research (B) (15H04336 to IK) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Naito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naito, A., Makino, Y., Tasei, Y., Kawamura, I. (2018). Photoirradiation and Microwave Irradiation NMR Spectroscopy. In: The Nuclear Magnetic Resonance Society of Japan (eds) Experimental Approaches of NMR Spectroscopy. Springer, Singapore. https://doi.org/10.1007/978-981-10-5966-7_5

Download citation

Publish with us

Policies and ethics