Skip to main content

Hybrid Organic/Inorganic and Perovskite Solar Cells

  • Chapter
  • First Online:
Molecular Devices for Solar Energy Conversion and Storage

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

In this chapter, we describe the various hybrid organic/inorganic solar cells with a focus on perovskite solar cells. We present a brief introduction to the topic of solar cells in general and our definition of hybrid solar cells. As dye-sensitized and solid-state dye-sensitized solar cells are covered in detail in other chapters of this book, we only provide a short description of the fundamental working mechanisms of dye-sensitized, solid-state dye-sensitized and extremely thin absorber solar cells as a necessary background for the other parts of this chapter. We then focus, in detail, on the current understanding of perovskite solar cells such as the crystal structure, the optical and electronic properties of perovskite films, their formation, and current device architectures. Additionally, we look at the specialty of perovskite solar cells: The often-observed hysteresis effect when recording current density–voltage curves. We conclude with technological aspects, such as the preparation of flexible perovskite solar cells, their low-temperature processing, and degradation mechanisms. We finish our chapter with a brief mentioning of hybrid bulk heterojunction solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

tBP:

4-tert-butylpyridien

BI:

Building integration

BHJ:

Bulk heterojunction solar cell

EC :

Conduction band edge

CE:

Counter electrode

LD :

Diffusion length

DSSC:

Dye-sensitized solar cell

ETL:

Electron transport layer

EPBT:

Energy payback time

ETA:

Extremely thin absorber solar cell

EF :

Fermi energy level

FF:

Fill factor

f-PSC:

Flexible perovskite solar cell

FTO:

Fluorine doped tin oxide

FA:

Formamidinium

HSC:

Hybrid organic/inorganic solar cell

HI:

Hydriodic acid

LED:

Light emitting diode

MOS:

Metal oxide semiconductor

MA:

Methylammonium

VOC :

Open circuit voltage

OPV:

Organic photovoltaic

OSC:

Organic solar cell

PSC:

Perovskite solar cell

PCE:

Photoconversion efficiency

JSC :

Photocurrent density

PV:

Photovoltaic

P3HT:

Poly(3-heylthiophene)

PC:

Polycarbonate

PES:

Polyethersulfone

PEN:

Polyethylene naphthalate

PET:

Polyethylene terephthalate

QDSC:

Quantum dot solar cell

R2R:

Roll-to-roll

SS:

Single step

s-DSSC:

Solid-state dye-sensitized solar cell

HTL:

Solid-state hole transport layer

ToF:

Time-of-flight method

ITO:

Tin doped indium oxide

TS:

Two step

VAVD:

Vacuum assisted vapor deposition

EV :

Valence band edge

WE:

Working electrode

References

  1. Fakharuddin A, Jose R, Brown TM, Fabregat-Santiago F, Bisquert J (2014) A perspective on the production of dye-sensitized solar modules. Energy Environ Sci 7(12):3952–3981. doi:10.1039/c4ee01724b

    Article  Google Scholar 

  2. Di Giacomo F, Fakharuddin A, Jose R, Brown TM (2016) Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ Sci 9(10):3007–3035. doi:10.1039/C6EE01137C

    Article  Google Scholar 

  3. NERL (2016) Best research cell efficiencies (2016). doi:http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

  4. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2016) Solar cell efficiency tables (version 48). Prog Photovolt Res Appl 24(7):905–913. doi:10.1002/pip.2788

    Article  Google Scholar 

  5. Kakiage K, Aoyama Y, Yano T, Oya K, J-i Fujisawa, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51(88):15894–15897. doi:10.1039/C5CC06759F

    Article  Google Scholar 

  6. Heo JH, Han HJ, Kim D, Ahn TK, Im SH (2015) Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ Sci 8(5):1602–1608. doi:10.1039/c5ee00120j

    Article  Google Scholar 

  7. Saliba M, Matsui T, Seo J-Y, Domanski K, Correa-Baena J-P, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldt A, Gratzel M (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci. doi:10.1039/C5EE03874J

    Google Scholar 

  8. Saliba M, Orlandi S, Matsui T, Aghazada S, Cavazzini M, Correa-Baena J-P, Gao P, Scopelliti R, Mosconi E, Dahmen K-H, De Angelis F, Abate A, Hagfeldt A, Pozzi G, Graetzel M, Nazeeruddin MK (2016) A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nat Energy:15017. doi:10.1038/nenergy.2015.17

  9. Olivier Lavagne d’Ortigue AWaSE (2015) Renewable energy capacity statistics 2015

    Google Scholar 

  10. Hoppea H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19(7):1925. doi:10.1557/JMR.2004.0252

    Google Scholar 

  11. Dennler G, Lungenschmied C, Neugebauer H, Sariciftci NS, Latrèche M, Czeremuszkin G, Wertheimer MR (2006) A new encapsulation solution for flexible organic solar cells. Thin Solid Films 511–512:349–353. doi:10.1016/j.tsf.2005.12.091

    Article  Google Scholar 

  12. Hoppe H, Sariciftci NS (2006) Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem 16(1):45–61. doi:10.1039/B510618B

    Article  Google Scholar 

  13. Scharber MC, Sariciftci NS (2013) Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci 38(12):1929–1940. doi:10.1016/j.progpolymsci.2013.05.001

    Article  Google Scholar 

  14. O’Regan B, Gratzel Michael (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. doi:10.1038/353737a0

    Article  Google Scholar 

  15. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G (2015) Electrolytes in dye-sensitized solar cells. Chem Rev 115(5):2136–2173. doi:10.1021/cr400675m

    Article  Google Scholar 

  16. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663. doi:10.1021/cr900356p

    Article  Google Scholar 

  17. Jose R, Thavasi V, Ramakrishna S (2009) Metal oxides for dye-sensitized solar cells. J Am Ceram Soc 92(2):289–301

    Article  Google Scholar 

  18. Schmidt-Mende L, Zakeeruddin SM, Grätzel M (2005) Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium-dye. Appl Phys Lett 86(1):013504-013501–013504-013503. doi:10.1063/1.1844032

  19. Wali Q, Fakharuddin A, Jose R (2015) Tin oxide as a photoanode for dye-sensitised solar cells: current progress and future challenges. J Power Sources 293:1039–1052. doi:10.1016/j.jpowsour.2015.06.037

    Article  Google Scholar 

  20. Zhang Q, Cao G (2011) Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 6(1):91–109. doi:10.1016/j.nantod.2010.12.007

    Article  Google Scholar 

  21. Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photon 6(3):162–169. doi:10.1038/nphoton.2012.22

    Article  Google Scholar 

  22. Calogero G, Bartolotta A, Di Marco G, Di Carlo A, Bonaccorso F (2015) Vegetable-based dye-sensitized solar cells. Chem Soc Rev 44(10):3244–3294. doi:10.1039/C4CS00309H

    Article  Google Scholar 

  23. Robertson N (2006) Optimizing dyes for dye-sensitized solar cells. Angew Chem Int Ed 45(15):2338–2345. doi:10.1002/anie.200503083

    Article  Google Scholar 

  24. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6(3):242–247. doi:10.1038/nchem.1861

    Article  Google Scholar 

  25. Daeneke T, Kwon TH, Holmes AB, Duffy NW, Bach U, Spiccia L (2011) High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nat Chem 3(3):211–215. doi:10.1038/nchem.966

    Article  Google Scholar 

  26. Powar S, Daeneke T, Ma MT, Fu D, Duffy NW, Götz G, Weidelener M, Mishra A, Bäuerle P, Spiccia L, Bach U (2013) Highly efficient p-type dye-sensitized solar cells based on Tris(1,2-diaminoethane)Cobalt(II)/(III) electrolytes. Angew Chem Int Ed 52(2):602–605. doi:10.1002/anie.201206219

    Article  Google Scholar 

  27. Jang S-R, Vittal R, Lee J, Jeong N, Kim K-J (2006) Linkage of N3 dye to N3 dye on nanocrystalline TiO2 through trans-1,2-bis(4-pyridyl)ethylene for enhancement of photocurrent of dye-sensitized solar cells. Chem Commun 1:103–105. doi:10.1039/B510725C

    Article  Google Scholar 

  28. Katoh R, Furube A, Kasuya M, Fuke N, Koide N, Han L (2007) Photoinduced electron injection in black dye sensitized nanocrystalline TiO2 films. J Mater Chem 17(30):3190–3196. doi:10.1039/B702805A

    Article  Google Scholar 

  29. Kalyanasundaram K (2010) Dye-sensitized solar cells, vol 1, 1 edn. CRC press, Switzerland, p 305

    Google Scholar 

  30. Bach U, Lupo D, Comte P, Moser JE, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702):583–585

    Article  Google Scholar 

  31. Chung I, Lee B, He J, Chang RPH, Kanatzidis MG (2012) All-solid-state dye-sensitized solar cells with high efficiency. Nature 485(7399):486–489

    Article  Google Scholar 

  32. Yum J-H, Chen P, Grätzel M, Nazeeruddin MK (2008) Recent developments in solid-state dye-sensitized solar cells. Chemsuschem 1(8–9):699–707. doi:10.1002/cssc.200800084

    Article  Google Scholar 

  33. Bakr ZH, Wali Q, Fakharuddin A, Schmidt-Mende L, Brown TM, Jose R (2017) Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy 34:271–305. doi:10.1016/j.nanoen.2017.02.025

    Article  Google Scholar 

  34. Snaith HJ, Schmidt-Mende L (2007) Advances in liquid-electrolyte and solid-state dye-sensitized solar cells. Adv Mater 19(20):3187–3200

    Article  Google Scholar 

  35. Hodes G, Cahen D (2012) All-solid-state, semiconductor-sensitized nanoporous solar cells. Acc Chem Res 45(5):705–713. doi:10.1021/ar200219h

    Article  Google Scholar 

  36. Mora-Sero I, Gimenez S, Fabregat-Santiago F, Azaceta E, Tena-Zaera R, Bisquert J (2011) Modeling and characterization of extremely thin absorber (eta) solar cells based on ZnO nanowires. Phys Chem Chem Phys 13(15):7162–7169. doi:10.1039/C1CP20352E

    Article  Google Scholar 

  37. Tennakone K, Kumara GRRA, Kottegoda IRM, Perera VPS, Aponsu GMLP (1998) Nanoporous n-##IMG## [http://ej.iop.org/images/0022-3727/31/18/019/toc_img1.gif]/selenium/p-CuCNS photovoltaic cell. J Phys D: Appl Phys 31(18):2326

  38. Plass R, Pelet S, Krueger J, Grätzel M, Bach U (2002) Quantum dot sensitization of organic–inorganic hybrid solar cells. J Phys Chem B 106(31):7578–7580. doi:10.1021/jp020453l

    Article  Google Scholar 

  39. Lévy-Clément C, Tena-Zaera R, Ryan MA, Katty A, Hodes G (2005) CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions. Adv Mater 17(12):1512–1515. doi:10.1002/adma.200401848

    Article  Google Scholar 

  40. Larramona G, Choné C, Jacob A, Sakakura D, Delatouche B, Péré D, Cieren X, Nagino M, Bayón R (2006) Nanostructured photovoltaic cell of the type titanium dioxide, cadmium sulfide thin coating, and copper thiocyanate showing high quantum efficiency. Chem Mater 18(6):1688–1696. doi:10.1021/cm052819n

    Article  Google Scholar 

  41. Belaidi A, Dittrich T, Kieven D, Tornow J, Schwarzburg K, Lux-Steiner M (2008) Influence of the local absorber layer thickness on the performance of ZnO nanorod solar cells. Phys Status Solidi (RRL)—Rapid Res Lett 2(4):172–174. doi:10.1002/pssr.200802092

  42. Itzhaik Y, Niitsoo O, Page M, Hodes G (2009) Sb2S3-sensitized nanoporous TiO2 solar cells. J Phys Chem C 113(11):4254–4256. doi:10.1021/jp900302b

    Article  Google Scholar 

  43. Nezu S, Larramona G, Choné C, Jacob A, Delatouche B, Péré D, Moisan C (2010) Light soaking and gas effect on nanocrystalline TiO2/Sb2S3/CuSCN photovoltaic cells following extremely thin absorber concept. J Phys Chem C 114(14):6854–6859. doi:10.1021/jp100401e

    Article  Google Scholar 

  44. Krunks M, Kärber E, Katerski A, Otto K, Oja Acik I, Dedova T, Mere A (2010) Extremely thin absorber layer solar cells on zinc oxide nanorods by chemical spray. Sol Energy Mater Sol Cells 94(7):1191–1195. doi:10.1016/j.solmat.2010.02.036

    Article  Google Scholar 

  45. Chang JA, Rhee JH, Im SH, Lee YH, H-j Kim, Seok SI, Nazeeruddin MK, Gratzel M (2010) High-performance nanostructured inorganic–organic heterojunction solar cells. Nano Lett 10(7):2609–2612. doi:10.1021/nl101322h

    Article  Google Scholar 

  46. Tornow J, Schwarzburg K, Belaidi A, Dittrich T, Kunst M, Hannappel T (2010) Charge separation and recombination in radial ZnO/In2S3/CuSCN heterojunction structures. J Appl Phys 108(4):044915. doi:10.1063/1.3466776

    Article  Google Scholar 

  47. Mora-Seró I, Bisquert J (2010) Breakthroughs in the development of semiconductor-sensitized solar cells. J Phys Chem Lett 1(20):3046–3052. doi:10.1021/jz100863b

    Article  Google Scholar 

  48. Ikegami M, Suzuki J, Teshima K, Kawaraya M, Miyasaka T (2009) Improvement in durability of flexible plastic dye-sensitized solar cell modules. Sol Energy Mater Sol Cells 93(6–7):836–839

    Article  Google Scholar 

  49. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2. doi:10.1038/srep00591

  50. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107):643–647. doi:10.1126/science.1228604

    Article  Google Scholar 

  51. Kim HS, Im SH, Park NG (2014) Organolead halide perovskite: new horizons in solar cell research. J Phys Chem C 118(11):5615–5625. doi:10.1021/jp409025w

    Article  Google Scholar 

  52. Kazim S, Nazeeruddin MK, Grätzel M, Ahmad S (2014) Perovskite as light harvester: a game changer in photovoltaics. Angewandte Chemie—Int Ed 53(11):2812–2824. doi:10.1002/anie.201308719

    Article  Google Scholar 

  53. Brittman S, Adhyaksa GWP, Garnett EC (2015) The expanding world of hybrid perovskites: materials properties and emerging applications. MRS Commun 5(1):7–26. doi:10.1557/mrc.2015.6

    Article  Google Scholar 

  54. Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8(7):506–514. doi:10.1038/nphoton.2014.134

    Article  Google Scholar 

  55. Fakharuddin A, De Rossi F, Watson TM, Schmidt-Mende L, Jose R (2016) Research update: behind the high efficiency of hybrid perovskite solar cells. APL Mater 4(9):091505. doi:10.1063/1.4962143

    Article  Google Scholar 

  56. Ito S (2016) Research update: overview of progress about efficiency and stability on perovskite solar cells. APL Mater 4(9):091504. doi:10.1063/1.4961955

    Article  Google Scholar 

  57. Fakharuddin A, Schmidt-Mende L, Mora-Sero I, Garcia-Belmonte G, Jose R (2016) Interfaces in perovskite solar cells. Adv Energy Mater (2017) (in press)

    Google Scholar 

  58. Yagi T, Mao HK, Bell PM (1978) Structure and crystal chemistry of perovskite-type MgSiO3. Phys Chem Miner 3(2):97–110. doi:10.1007/BF00308114

    Article  Google Scholar 

  59. Peña MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101(7):1981–2017. doi:10.1021/cr980129f

    Article  Google Scholar 

  60. Megaw HD (1946) Crystal structure of double oxides of the perovskite type. Proceedings of the Physical Society 58(2):133–152. doi:10.1088/0959-5309/58/2/301

    Article  Google Scholar 

  61. Saparov B, Mitzi DB (2016) Organic-inorganic perovskites: structural versatility for functional materials design. Chem Rev 116(7):4558–4596. doi:10.1021/acs.chemrev.5b00715

    Article  Google Scholar 

  62. Boix PP, Nonomura K, Mathews N, Mhaisalkar SG (2014) Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater Today 17:16–23

    Article  Google Scholar 

  63. Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8:506–514

    Article  Google Scholar 

  64. Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin MK, Grätzel M, De Angelis F (2014) Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett 14(6):3608–3616. doi:10.1021/nl5012992

    Article  Google Scholar 

  65. Bi D, Tress W, Dar MI, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Correa Baena J-P, Decoppet J-D, Zakeeruddin SM, Nazeeruddin MK, Grätzel M, Hagfeldt A (2016) Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Adv 2(1). doi:10.1126/sciadv.1501170

  66. Li W, Zhang W, Van Reenen S, Sutton RJ, Fan J, Haghighirad AA, Johnston MB, Wang L, Snaith HJ (2016) Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ Sci 9(2):490–498. doi:10.1039/C5EE03522H

  67. Noh JHJH, Im SSH, Heo JHJH, Mandal TNT, Seok SSI (2013) Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 13:1764–1769. doi:10.1021/nl400349b

    Article  Google Scholar 

  68. Sutton RJ, Eperon GE, Miranda L, Parrott ES, Kamino BA, Patel JB, Hörantner MT, Johnston MB, Haghighirad AA, Moore DT, Snaith HJ (2016) Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater 6(8):n/a–n/a. doi:10.1002/aenm.201502458

  69. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342 (6156):341–344. doi:10.1126/science.1243982

  70. Zhou H, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong Z, You J, Liu Y, Yang Y (2014) Interface engineering of highly efficient perovskite solar cells. Science 345(6196):542–546. doi:10.1126/science.1254050

    Article  Google Scholar 

  71. Lin Q, Armin A, Nagiri RCR, Burn PL, Meredith P (2015) Electro-optics of perovskite solar cells. Nat Photonics 9(2):106–112. doi:10.1038/nphoton.2014.284

    Article  Google Scholar 

  72. Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang JTW, Stranks SD, Snaith HJ, Nicholas RJ (2015) Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat Phys 11(7):582–587. doi:10.1038/nphys3357

    Article  Google Scholar 

  73. Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwaks Y, Hodes G, Cahen D (2014) Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett 14:1000–1004

    Article  Google Scholar 

  74. Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52:9019–9038. doi:10.1021/ic401215x

    Article  Google Scholar 

  75. Bretschneider SA, Weickert J, Dorman JA, Schmidt-Mende L (2014) Research update: Physical and electrical characteristics of lead halide perovskites for solar cell applications. APL Mater 2(4). doi:10.1063/1.4871795

  76. Olthof S (2016) Research update: the electronic structure of hybrid perovskite layers and their energetic alignment in devices. APL Mater 4(9):091502. doi:10.1063/1.4960112

    Article  Google Scholar 

  77. Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J (2015) Electron-hole diffusion lengths >175 m in solution grown CH3NH3PbI3 single crystals. Science 347:967–970. doi:10.1126/science.aaa5760

    Article  Google Scholar 

  78. Yin W-J, Shi T, Yan Y (2014) Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett 104(6):063903. doi:10.1063/1.4864778

    Article  Google Scholar 

  79. Juarez-Perez EJ, Wußler M, Fabregat-Santiago F, Lakus-Wollny K, Mankel E, Mayer T, Jaegermann W, Mora-Sero I (2014) Role of the selective contacts in the performance of lead halide perovskite solar cells. J Phys Chem Lett 5:680–685. doi:10.1021/jz500059v

    Article  Google Scholar 

  80. Im JH, Kim HS, Park NG (2014) Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3. APL Mater 2(8). doi:10.1063/1.4891275

  81. Razza S, Castro-Hermosa S, Di Carlo A, Brown TM (2016) Research update: large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater 4(9):091508. doi:10.1063/1.4962478

    Article  Google Scholar 

  82. Troughton J, Carnie MJ, Davies ML, Charbonneau C, Jewell EH, Worsley DA, Watson TM (2016) Photonic flash-annealing of lead halide perovskite solar cells in 1 ms. J Mater Chem A 4(9):3471–3476. doi:10.1039/C5TA09431C

    Article  Google Scholar 

  83. Giordano F, Abate A, Correa Baena JP, Saliba M, Matsui T, Im SH, Zakeeruddin SM, Nazeeruddin MK, Hagfeldt A, Graetzel M (2016) Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat Commun 7. doi:10.1038/ncomms10379

  84. Zhu ZG, Bai Y, Liu X, Chueh C-C, Yang S, Jen AKY (2016) Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv Mater n/a–n/a. doi:10.1002/adma.201600619

    Google Scholar 

  85. Zhou Y, Yang M, Wu W, Vasiliev AL, Zhu K, Padture NP (2015) Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance solar cells. J Mater Chem A 3(15):8178–8184. doi:10.1039/c5ta00477b

    Article  Google Scholar 

  86. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398

    Article  Google Scholar 

  87. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319. doi:10.1038/nature12340

    Article  Google Scholar 

  88. Yantara N, Sabba D, Yanan F, Kadro JM, Moehl T, Boix PP, Mhaisalkar S, Grätzel M, Grätzel C (2015) Loading of mesoporous titania films by CH3NH3PbI3 perovskite, single step vs. sequential deposition. Chem Commun 51(22):4603–4606. doi:10.1039/c4cc09556a

    Article  Google Scholar 

  89. Yi C, Li X, Luo J, Zakeeruddin SM, Grätzel M (2016) Perovskite photovoltaics with outstanding performance produced by chemical conversion of bilayer mesostructured lead halide/TiO2 films. Adv Mater 28(15):2964–2970. doi:10.1002/adma.201506049

    Article  Google Scholar 

  90. Fakharuddin A, Palma AL, Giacomo FD, Casaluci S, Matteocci F, Wali Q, Rauf M, Carlo AD, Brown TM, Jose R (2015) Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO4 laser patterned rutile nanorods. Nanotechnology 26(49):494002

    Article  Google Scholar 

  91. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051. doi:10.1021/ja809598r

    Article  Google Scholar 

  92. Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y (2014) Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J Am Chem Soc 136:11610–11613. doi:10.1021/ja506624n

    Article  Google Scholar 

  93. Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith HJ (2014) Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ Sci 7(3):1142–1147. doi:10.1039/c3ee43707h

    Article  Google Scholar 

  94. Leijtens T, Eperon GE, Pathak S, Abate A, Lee MM, Snaith HJ (2013) Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat Commun 4. doi:10.1038/ncomms3885

  95. Correa Baena JP, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson TJ, Srimath Kandada AR, Zakeeruddin SM, Petrozza A, Abate A, Nazeeruddin MK, Gratzel M, Hagfeldt A (2015) Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci 8(10):2928–2934. doi:10.1039/C5EE02608C

    Article  Google Scholar 

  96. Bi C, Wang Q, Shao Y, Yuan Y, Xiao Z, Huang J (2015) Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat Commun 6. doi:10.1038/ncomms8747

  97. Hu Q, Wu J, Jiang C, Liu T, Que X, Zhu R, Gong Q (2014) Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. ACS Nano 8(10):10161–10167. doi:10.1021/nn5029828

    Article  Google Scholar 

  98. Wei H, Xiao J, Yang Y, Lv S, Shi J, Xu X, Dong J, Luo Y, Li D, Meng Q (2015) Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells. Carbon 93:861–868. doi:10.1016/j.carbon.2015.05.042

    Article  Google Scholar 

  99. Wei Z, Chen H, Yan K, Zheng X, Yang S (2015) Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. J Mater Chem A 3(48):24226–24231. doi:10.1039/c5ta07714a

    Article  Google Scholar 

  100. Zhang Y, Liu M, Eperon GE, Leijtens T, McMeekin DP, Saliba M, Zhang W, De Bastiani M, petrozza a, Herz L, Johnston MB, Lin H, Snaith H (2015) Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells. Mater Horiz 2:315–322. doi:10.1039/C4MH00238E

  101. Song J, Zheng E, Bian J, Wang X-F, Tian W, Sanehira Y, Miyasaka T (2015) Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J Mater Chem A 3(20):10837–10844. doi:10.1039/C5TA01207D

    Article  Google Scholar 

  102. Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G, Yan Y (2015) Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc 137(21):6730–6733. doi:10.1021/jacs.5b01994

    Article  Google Scholar 

  103. Park M, Kim J-Y, Son HJ, Lee C-H, Jang SS, Ko MJ (2016) Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy 26:208–215. doi:10.1016/j.nanoen.2016.04.060

    Article  Google Scholar 

  104. Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ (2013) Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun 4:2761. doi:10.1038/ncomms3761

    Article  Google Scholar 

  105. Giorgi G, Fujisawa JI, Segawa H, Yamashita K (2013) Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: A density functional analysis. J Phys Chem Lett 4(24):4213–4216. doi:10.1021/jz4023865

    Article  Google Scholar 

  106. Mei Y, Jurchescu OD, Zhang C, Vardeny ZV (2015) Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature. MRS Commun. doi:10.1557/mrc.2015.21

    Google Scholar 

  107. Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gratzel M, Han H (2014) A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345:295–298. doi:10.1126/science.1254763

  108. Li X, Tschumi M, Han H, Babkair SS, Alzubaydi RA, Ansari AA, Habib SS, Nazeeruddin MK, Zakeeruddin SM, Grätzel M (2015) Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics. Energy Technol 3:551–555. doi:10.1002/ente.201500045

    Article  Google Scholar 

  109. Ku Z, Xia X, Shen H, Tiep NH, Fan HJ (2015) Mesoporous nickel counter electrode for printable and reusable perovskite solar cells. Nanoscale. doi:10.1039/C5NR03610K

    Google Scholar 

  110. Tress W (2016) Maximum efficiency and open-circuit voltage of perovskite solar cells. In: Nam-Gyu Park MG, Tsutomu Miyasaka (ed) Organic-inorganic halide perovskite photovoltaics. Springer, pp 53–77

    Google Scholar 

  111. Snaith HJ, Abate A, Ball JM, Eperon GE, Leijtens T, Kimberly N, Stranks SD, Wang JT-W, Wojciechowski K, Zhang W, Noel NK (2014) Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett 5:1511–1515

    Article  Google Scholar 

  112. Unger EL, Hoke ET, Bailie CD, Nguyen WH, Bowring AR, Heumüller T, Christoforod MG, McGehee MD (2014) Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ Sci 7:3690–3698

    Article  Google Scholar 

  113. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13:897–903

    Article  Google Scholar 

  114. Sanchez RS, Gonzalez-Pedro V, Lee J-W, Park N-G, Kang YS, Mora-Sero I, Bisquert J (2014) Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. J Phys Chem Lett 5:2357–2363

    Article  Google Scholar 

  115. Frost JM, Butler KT, Walsh A (2014) Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater 2:081506

    Article  Google Scholar 

  116. Wei J, Zhao Y, Li H, Li G, Pan J, Xu D, Zhao Q, Yu D (2014) Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. J Phys Chem Lett 5:3937–3945

    Article  Google Scholar 

  117. Chen H-W, Sakai N, Ikegami M, Miyasaka T (2015) Emergence of hysteresis and transient ferroelectric response in organo-lead halide perovskite solar cells. J Phys Chem Lett 6:164–169

    Article  Google Scholar 

  118. Dualeh A, Moehl T, Tétreault N, Teuscher J, Gao P, Nazeeruddin MK, Grätzel M (2014) Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8:362–373

    Article  Google Scholar 

  119. Yang Y, Xiao J, Wei H, Zhu L, Li D, Luo Y, Wu H, Meng Q (2014) An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells. RSC Adv 4(95):52825–52830. doi:10.1039/c4ra09519g

    Article  Google Scholar 

  120. Almora O, Zarazua I, Mas-Marza E, Mora-Sero I, Bisquert J, Garcia-Belmonte G (2015) Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells. J Phys Chem Lett 6:1645–1652

    Article  Google Scholar 

  121. Chen B, Yang M, Zheng X, Wu C, Li W, Yan Y, Bisquert J, Garcia-Belmonte G, Zhu K, Priya S (2015) Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells. J Phys Chem Lett 6:4693–4700

    Article  Google Scholar 

  122. Chen B, Yang M, Priya S, Zhu K (2016) Origin of J-V hysteresis in perovskite solar cells. J Phys Chem Lett 7(5):905–917. doi:10.1021/acs.jpclett.6b00215

    Article  Google Scholar 

  123. Wojciechowski K, Stranks SD, Abate A, Sadoughi G, Sadhanala A, Kopidakis N, Rumbles G, Li C-Z, Friend RH, Jen AK-Y, Snaith HJ (2014) Heterojunction modification for highly efficient organic-inorganic perovskite Solar cells. ACS Nano 8:12701–12709

    Google Scholar 

  124. Seo JW, Park S, Kim YC, Jeon NJ, Noh JH, Yoon SC, Seok SI (2014) Benefits of very thin PCBM and LiF layer for solution-processed P-I-N perovskite solar cells. Energy Environ Sci 7:2642–2646

    Article  Google Scholar 

  125. Snaith HJ, Abate A, Ball JM, Eperon GE, Leijtens T, Noel NK, Stranks SD, Wang JTW, Wojciechowski K, Zhang W (2014) Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett 5(9):1511–1515. doi:10.1021/jz500113x

    Article  Google Scholar 

  126. Christians JA, Manser JS, Kamat PV (2015) Best practices in perovskite solar cell efficiency measurements. Avoiding the error of making bad cells look good. J Phys Chem Lett 6(5):852–857. doi:10.1021/acs.jpclett.5b00289

    Article  Google Scholar 

  127. Zimmermann E, Ehrenreich P, Pfadler T, Dorman JA, Weickert J, Schmidt-Mende L (2014) Erroneous efficiency reports harm organic solar cell research. Nat Photonics 8(9):669–672

    Article  Google Scholar 

  128. Zimmermann E, Wong KK, Müller M, Hu H, Ehrenreich P, Kohlstädt M, Würfel U, Mastroianni S, Mathiazhagan G, Hinsch A, Gujar TP, Thelakkat M, Pfadler T, Schmidt-Mende L (2016) Characterization of perovskite solar cells: towards a reliable measurement protocol. APL Mater 4(9):091901. doi:10.1063/1.4960759

    Article  Google Scholar 

  129. Heo JH, Lee MH, Han HJ, Patil BR, Yu JS, Im SH (2016) Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells. J Mater Chem A 4(5):1572–1578. doi:10.1039/c5ta09520d

    Article  Google Scholar 

  130. Yang J, Siempelkamp BD, Mosconi E, De Angelis F, Kelly TL (2015) Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem Mater 27:150529083734008. doi:10.1021/acs.chemmater.5b01598

    Google Scholar 

  131. Yang D, Yang R, Zhang J, Yang Z, Liu S, Li C (2015) High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ Sci 8(11):3208–3214. doi:10.1039/c5ee02155c

    Article  Google Scholar 

  132. Shin SS, Yang WS, Noh JH, Suk JH, Jeon NJ, Park JH, Kim JS, Seong WM, Seok SI (2015) High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat Commun 6:7410. doi:10.1038/ncomms8410

    Article  Google Scholar 

  133. Xiao Y, Han G, Zhou H, Wu J (2016) An efficient titanium foil based perovskite solar cell: using a titanium dioxide nanowire array anode and transparent poly(3,4-ethylenedioxythiophene) electrode. RSC Adv 6(4):2778–2784. doi:10.1039/C5RA23430A

    Article  Google Scholar 

  134. Habisreutinger SN, McMeekin DP, Snaith HJ, Nicholas RJ (2016) Research update: strategies for improving the stability of perovskite solar cells. APL Mater 4(9):091503. doi:10.1063/1.4961210

    Article  Google Scholar 

  135. Guo X, Niu G, Wang L (2015) Chemical stability issue and its research process of perovskite solar cells with high efficiency. Acta Chim Sinica 73(3):211–218. doi:10.6023/A14100687

    Article  Google Scholar 

  136. Rong Y, Liu L, Mei A, Li X, Han H (2015) Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Adv Energy Mater 5(20). doi:10.1002/aenm.201501066

  137. Berhe TA, Su WN, Chen CH, Pan CJ, Cheng JH, Chen HM, Tsai MC, Chen LY, Dubale AA, Hwang BJ (2016) Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci 9(2):323–356. doi:10.1039/c5ee02733k

    Article  Google Scholar 

  138. Shahbazi M, Wang H (2016) Progress in research on the stability of organometal perovskite solar cells. Sol Energy 123:74–87. doi:10.1016/j.solener.2015.11.008

    Article  Google Scholar 

  139. Wang D, Wright M, Elumalai NK, Uddin A (2016) Stability of perovskite solar cells. Sol Energy Mater Sol Cells 147:255–275. doi:10.1016/j.solmat.2015.12.025

    Article  Google Scholar 

  140. Fakharuddin A, Di Giacomo F, Palma AL, Matteocci F, Ahmed I, Razza S, D’Epifanio A, Licoccia S, Ismail J, Di Carlo A, Brown TM, Jose R (2015) Vertical TiO2 nanorods as a medium for stable and high-efficiency perovskite solar modules. ACS Nano 9(8):8420–8429. doi:10.1021/acsnano.5b03265

    Article  Google Scholar 

  141. Hwang I, Baek M, Yong K (2015) Core/shell structured TiO2/CdS electrode to enhance the light stability of perovskite solar cells. ACS Appl Mater Interfaces 7(50):27863–27870. doi:10.1021/acsami.5b09442

    Article  Google Scholar 

  142. Carrillo J, Guerrero A, Rahimnejad S, Almora O, Zarazua I, Mas-Marza E, Bisquert J, Garcia-Belmonte G (2016) Ionic reactivity at contacts and aging of methylammonium lead triiodide perovskite solar cells. Adv Energy Mater 6(9):n/a–n/a. doi:10.1002/aenm.201502246

  143. Guerrero A, You J, Aranda C, Kang YS, Garcia-Belmonte G, Zhou H, Bisquert J, Yang Y (2016) Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10(1):218–224. doi:10.1021/acsnano.5b03687

    Article  Google Scholar 

  144. Lee YH, Luo J, Humphry-Baker R, Gao P, Grätzel M, Nazeeruddin MK (2015) Unraveling the reasons for efficiency loss in perovskite solar cells. Adv Func Mater 25(25):3925–3933. doi:10.1002/adfm.201501024

    Article  Google Scholar 

  145. Leijtens T, Eperon GE, Noel NK, Habisreutinger SN, Petrozza A, Snaith HJ (2015) Stability of metal halide perovskite solar cells. Adv Energy Mater 5(20). doi:10.1002/aenm.201500963

  146. Unger EL, Hoke ET, Bailie CD, Nguyen WH, Bowring AR, Heumüller T, Christoforo MG, McGehee MD (2014) Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ Sci 7(11):3690–3698. doi:10.1039/c4ee02465f

    Article  Google Scholar 

  147. Tress W, Marinova N, Moehl T, Zakeeruddin SM, Nazeeruddin MK, Grätzel M (2015) Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ Sci 8(3):995–1004. doi:10.1039/c4ee03664f

    Article  Google Scholar 

  148. Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q (2016) A polymer scaffold for self-healing perovskite solar cells. Nat Commun 7. doi:10.1038/ncomms10228

  149. Manshor NA, Wali Q, Wong KK, Muzakir SK, Fakharuddin A, Schmidt-Mende L, Jose R (2016) Humidity versus photo-stability of metal halide perovskite films in a polymer matrix. Phys Chem Chem Phys. doi:10.1039/C6CP03600G

  150. Leo K (2015) Perovskite photovoltaics: signs of stability. Nat Nanotechnol 10:574–575. doi:10.1038/nnano.2015.139

    Article  Google Scholar 

  151. Xu J, Voznyy O, Comin R, Gong X, Walters G, Liu M, Kanjanaboos P, Lan X, Sargent EH (2016) Crosslinked remote-doped hole-extracting contacts enhance stability under accelerated lifetime testing in perovskite solar cells. Adv Mater 28(14):2807–2815. doi:10.1002/adma.201505630

    Article  Google Scholar 

  152. Oosterhout SD, Wienk MM, van Bavel SS, Thiedmann R, Jan Anton Koster L, Gilot J, Loos J, Schmidt V, Janssen RAJ (2009) The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. Nat Mater 8(10):818–824. doi:10.1038/nmat2533

  153. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427. doi:10.1126/science.1069156

    Article  Google Scholar 

  154. Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny LR, Carey GH, Fischer A, Kemp KW, Kramer IJ, Ning Z, Labelle AJ, Chou KW, Amassian A, Sargent EH (2012) Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol 7(9):577–582. doi:10.1038/nnano.2012.127

    Article  Google Scholar 

  155. Asil D, Walker BJ, Ehrler B, Vaynzof Y, Sepe A, Bayliss S, Sadhanala A, Chow PCY, Hopkinson PE, Steiner U, Greenham NC, Friend RH (2015) Role of PbSe structural stabilization in photovoltaic cells. Adv Func Mater 25(6):928–935. doi:10.1002/adfm.201401816

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Schmidt-Mende .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Fakharuddin, A., Schmidt-Mende, L. (2018). Hybrid Organic/Inorganic and Perovskite Solar Cells. In: Tian, H., Boschloo, G., Hagfeldt, A. (eds) Molecular Devices for Solar Energy Conversion and Storage. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5924-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5924-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5923-0

  • Online ISBN: 978-981-10-5924-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics