Skip to main content

Strengthening of RC Buildings with Composites

  • Chapter
  • First Online:
Strengthening and Retrofitting of Existing Structures

Part of the book series: Building Pathology and Rehabilitation ((BUILDING,volume 9))

Abstract

The use of composite materials for reinforced concrete (RC) structures strengthening has become a well-established practice in the last decades, especially in seismic zones, either for retrofitting RC buildings not designed to resist seismic loads or for post-event structural rehabilitations. The most common composite materials used in structural engineering applications are Fibre Reinforced Polymers (FRPs). A large number of guidelines and codes have been developed, collecting the most advanced concepts in FRP-strengthening: this chapter makes reference to one such document, the Italian CNR DT-200 R1/2013 (Instructions for design, execution and control of strengthening interventions through fibre-reinforced composites. Consiglio Nazionale delle Ricerche (CNR), Roma, 1), and deals with all the aspects relevant to a correct design process, which should start with a proper structural safety assessment and then move to the definition of material properties, main strengthening schemes and design equations. The concepts discussed herein can also be found in EN 1998-3 (Eurocode 8: design of structures for earthquake resistance. European Committee for Standardization, Brussel, 2) and in a recent State-of-the-Art book by RILEM (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. CNR-DT 200 R1/2013: Instructions for design, execution and control of strengthening interventions through fibre-reinforced composites. Consiglio Nazionale delle Ricerche (CNR), Roma, Italy. 2014.

    Google Scholar 

  2. EN. Eurocode 8: design of structures for earthquake resistance. Brussel: European Committee for Standardization; 1998. p. 2004.

    Google Scholar 

  3. Pellegrino C, Sena-Cruz J (eds) Design procedures for the use of composites in strengthening of reinforced concrete structures. RILEM State-of-the-Art Report 19, Springer, The Netherlands (2016).

    Google Scholar 

  4. Petrone F, Monti G. FRP-RC beam in shear: mechanical model and assessment procedure for pseudo-ductile behavior. Polymers. 2014;6(7):2051–64.

    Google Scholar 

Other Selected References

    Bond

    1. Alam MS, Kanakubo T, Yasojima A. Shear-peeling bond strength between continuous fiber sheet and concrete. ACI Struct J. 2012;109(1):75–82.

      Google Scholar 

    2. Bilotta A, Faella C, Martinelli E, Nigro E. Indirect identification method for bilinear bond-law relationship. J. Compos Constr ASCE. 2011;. doi:10.1061/(ASCE)CC.1943-5614.0000253).

    3. Bilotta A, Faella C, Martinelli E, Nigro E. Indirect identification method of bilinear interface laws for FRP bonded on a concrete substrate. J Compos Constr. 2012;16:171–184. ISSN: 1090-0268. doi:10.1061/(ASCE)CC.1943-5614.0000253.

    4. Bizindavyi L, Neale KW. Transfer lengths and bond strengths for composites bonded to concrete. J Compos Constr ASCE. 1999;3:153–60.

      Google Scholar 

    5. Bizindavyi L, Neale KW, Erki MA. Experimental Investigation of Bonded Fiber Reinforced Polymer-Concrete Joints under Cyclic Loading. J Compos Constr ASCE. 2003;7(2):127–34.

      Google Scholar 

    6. Ceroni F, Pecce M. Evaluation of bond Strength in concrete element externally reinforced with CFRP sheets and anchoring devices. J Compos Constr ASCE. 2010;14(5):521–30.

      Google Scholar 

    7. Chajes MJ, Finch WW, Januszka TF, Thomson TA. Bond and force transfer of composite material plates bonded to concrete. ACI Struct J. 1996;93(2):208–17.

      Google Scholar 

    8. Chen JF, Teng JG. Anchorage strength models for FRP and steel plates bonded to concrete. ASCE J Struct Eng. 2001;127(7):784–91.

      Google Scholar 

    9. De Lorenzis L, Miller B, Nanni A. Bond of fiber-reinforced polymer laminates to concrete. ACI Mater J. 2001;98:256–64.

      Google Scholar 

    10. Ferracuti B, Savoia M, Mazzotti C. Interface law for FRP-concrete delamination. Compos Struct. 2007;80(4):523–31.

      Google Scholar 

    11. Ko H, Sato Y. Bond stress-slip relationship between FRP sheet and concrete under cyclic load. J Compos Constr ASCE. 2007;11(4):419–26.

      Google Scholar 

    12. Mazzotti C, Savoia M, Ferracuti B. An experimental study on delamination of FRP plates bonded to concrete. Constr Build Mater. 2008;22:1409–21.

      Google Scholar 

    13. Nakaba K, Kanakubo T, Furuta T, Yoshizawa H. Bond behaviour between fiber-reinforced polymer laminates and concrete. ACI Struct J. 2001;98(3):359–67.

      Google Scholar 

    14. Oller E, Cobo Del Arco D, Marì Bernat AR. Design proposal to avoid peeling failure in FRP-strengthened reinforced concrete beams. J Compos Constr. 2009;13(5):384–93.

      Google Scholar 

    15. Smith ST, Teng JG. FRP-strengthened RC beams-II: assessment of debonding strength models. Eng Struct. 2002;24(4):397–417.

      Google Scholar 

    Flexure and Shear Strengthening

    1. Bousselham A, Chaallal O. Behaviour of reinforced concrete T-beams strengthened in shear with carbon fibre-reinforced polymer—An experimental study. ACI Struct J. 2006;103(3):339–47.

      Google Scholar 

    2. Bousselham A, Chaallal O. Mechanisms of shear resistance of concrete beams strengthened in shear with externally bonded FRP. J Compos Constr. 2008;12(5):302–14.

      Google Scholar 

    3. Bukhari IA, Vollum RL, Ahmad S, Sagaseta J. Shear strengthening of reinforced concrete. Magazine of Concrete Research. 2010;62(1):65–77.

      Google Scholar 

    4. Chen JF, Teng JG. Shear capacity of FRP-strengthened RC beams: FRP debonding. Constr Build Mater. 2003;17:27–41.

      Google Scholar 

    5. Carolin A, Taljsten B. Theoretical study on strengthening for increased shear bearing capacity. J Compos Constr. 2005;9(6):497–506.

      Google Scholar 

    6. Chen GM, Teng JG, Chen JF. Shear strength for FRP-strengthened RC beams with adverse FRP-steel interaction. J Compos Constr. 2013;17(1):50–66.

      Google Scholar 

    7. Chen GM, Teng JG, Chen JF, Rosenboom OA. Interaction between steel stirrups and shear-strengthening FRP strips in RC beams. J Compos Constr. 2010;14(5):498–509.

      Google Scholar 

    8. Chen JF, Teng JG. Shear capacity of FRP-strengthened RC beams: FRP rupture. J Struct Eng. 2003;129(5):615–25.

      Google Scholar 

    9. D’Antino T, Pellegrino C, Salomoni V, Mazzucco G. Shear behavior of RC structural members strengthened with FRP materials: a three dimensional numerical approach. ACI SP286-05, p. 69–84, 2012.

      Google Scholar 

    10. Khalifa A, Gold WJ, Nanni A, Abdel Aziz MI. Contribution of externally bonded FRP to shear capacity of RC flexural members. J Compos Constr. 1998;2(4):195–202.

      Google Scholar 

    11. Lima J, Barros J. Reliability analysis of shear strengthening externally bonded FRP models. Proc Inst Civ Eng (ICE) Struct. Build. 2011;164(1):43–56.

      Google Scholar 

    12. Modifi A, Chaallal O. Shear strengthening of RC beams with EB FRP: Influencing factors and conceptual debonding model. J Compos Constr. 2011;15(5):62–74.

      Google Scholar 

    13. Monti G, Liotta MA. Tests and design equations for FRP-strengthening in shear. Constr Build Mater. 2007;21:799–809.

      Google Scholar 

    14. Pellegrino C, Modena C. FRP shear strengthening of RC beams with transverse steel reinforcement. J Compos Constr. 2002;6(2):104–11.

      Google Scholar 

    15. Pellegrino C, Vasic M. Assessment of design procedures for the use of externally bonded FRP composites in shear strengthening of reinforced concrete beams. Compos B Eng. 2013;45(1):727–41.

      Google Scholar 

    16. Petrone F, Monti G. FRP-RC beam in shear: Mechanical model and assessment procedure for pseudo-ductile behavior. Polymers. 2014;6:2051–64.

      Google Scholar 

    17. Regan PE. Research on shear: A benefit to humanity or a waste of time? Structural Engineering. 1993;71:337–47.

      Google Scholar 

    18. Sas G, Täljsten B, Barros J, Lima J, Carolin A. Are available models reliable for predicting the FRP contribution to the shear resistance of RC beams? J Compos Constr. 2009;13(6):514–34.

      Google Scholar 

    Confinement

    1. Carey SA, Harries KA. Axial behaviour and modeling of confined small, medium, and large-scale circular sections with carbon fiber-reinforced polymer jackets. ACI Struct J. 2005;102(4):596–604.

      Google Scholar 

    2. Chaallal O, Shahawy M, Hassa M. Performance of axially loaded short rectangular columns strengthened with carbon FRP wrapping. J Compos Constr. 2003;7(3):200–8.

      Google Scholar 

    3. De Lorenzis L, Tepfers R. Comparative study of models on confinement of concrete cylinders with fiber reinforced polymer composites. ASCE J Compos Constr. 2003;7(3):219–37.

      Google Scholar 

    4. Fahmy MFM, Wu Z. Evaluating and proposing models of circular concrete columns confined with different FRP composites. Compos B. 2010;41(3):199–213.

      Google Scholar 

    5. Girgin ZC. Modified failure criterion to predict ultimate strength of circular columns confined by different materials. ACI Struct J. 2009;106(6):800–9.

      Google Scholar 

    6. Harajli MH, Dagher F. Seismic strengthening of bond-critical regions in rectangular reinforced concrete columns using fiber-reinforced polymer wraps. ACI Struct J. 2008;105(1):68–77.

      Google Scholar 

    7. Harajli MH. Axial stress–strain relationship for FRP confined circular and rectangular concrete columns. Cem Concr Compos. 2006;28:938–48.

      Google Scholar 

    8. Harajli MH, Hantouche E, Soudki K. Stress-strain model for fiber-reinforced polymer jacketed concrete columns. ACI Struct J. 2006;103(5):672–80.

      Google Scholar 

    9. Ilki A, Kumbasar N. Compressive behaviour of carbon fibre composite jacketed concrete with circular and non circular cross-section. J Earthq Eng. 2003;7(3):381–406.

      Google Scholar 

    10. Ilki A, Peker O, Karamuk E, Demir C, Kumbasar N. FRP retrofit of low and medium strength circular and rectangular reinforced concrete columns. ASCE J Mater Civ Eng. 2008;20(2):169–88.

      Google Scholar 

    11. Jiang T, Teng JG. Analysis-oriented models for FRP-confined concrete: a comparative assessment. Eng Struct. 2007;29(11):2968–86.

      Google Scholar 

    12. Lignola GP, Nardone F, Prota A, Manfredi G. Analytical model for the effective strain in FRP-wrapped circular RC columns. Compos Part B. 2012;43(8):3208–18.

      Google Scholar 

    13. Lignola GP, Nardone F, Prota A, De Luca A, Nanni A. Analysis of RC hollow columns strengthened with GFRP. ASCE J Compos Constr. 2011;15(4):545–56.

      Google Scholar 

    14. Lin JL, Liao CI. Compressive strength of reinforced concrete column confined by composite material. Compos Struct. 2004;65:239–50.

      Google Scholar 

    15. Matthys S, Toutanji H, Audenaert K, Taerwe L. Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites. ACI Structural Journal. 2005;102(2):258–67.

      Google Scholar 

    16. Mirmiran A, Shahawy M, Samaan M, El Echary H, Mastrapa JC, Pico O. Effect of column parameters on FRP-confined concrete. ASCE J Compos Constr. 1998;2(4):175–85.

      Google Scholar 

    17. Ozbakkaloglu T, Lim JC, Vincent T. FRP-confined concrete in circular sections: review and assessment of stress–strain models. Eng Struct. 2013;49:1068–88.

      Google Scholar 

    18. Pessiki S, Harries KA, Kestner JT, Sause R, Ricles JM. Axial behaviour of reinforced concrete columns confined with FRP jackets. ASCE J Compos Constr. 2001;5(4):237–45.

      Google Scholar 

    19. Realfonzo R, Napoli A. Concrete confined by FRP systems: confinement efficiency and design strength models. Compos B. 2011;42(4):736–55.

      Google Scholar 

    20. Spoelstra MR, Monti G. FRP-confined concrete model. ASCE J Compos Constr. 1999;3(3):143–50.

      Google Scholar 

    21. Tan KH. Strength enhancement of rectangular RC columns using FRP. ASCE J Compos Constr. 2002;6(3):175–83.

      Google Scholar 

    22. Teng JG, Lam L. Behaviour and modeling of fiber reinforced polymer-confined concrete. ASCE J Struct Eng. 2004;130(11):1713–23.

      Google Scholar 

    23. Wang LM, Wu YF. Effect of corner radius on the performance of CFRP-confined square concrete columns: test. Eng Struct. 2008;30(2):493–505.

      Google Scholar 

    24. Wu YF, Wang LM. Unified strength model for square and circular concrete columns confined by external jacket. ASCE J Struct Eng. 2009;135(3):253–61.

      Google Scholar 

    Download references

    Author information

    Authors and Affiliations

    Authors

    Corresponding author

    Correspondence to Giorgio Monti .

    Editor information

    Editors and Affiliations

    Rights and permissions

    Reprints and permissions

    Copyright information

    © 2018 Springer Nature Singapore Pte Ltd.

    About this chapter

    Cite this chapter

    Monti, G., Petrone, F. (2018). Strengthening of RC Buildings with Composites. In: Costa, A., Arêde, A., Varum, H. (eds) Strengthening and Retrofitting of Existing Structures. Building Pathology and Rehabilitation, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-10-5858-5_7

    Download citation

    • DOI: https://doi.org/10.1007/978-981-10-5858-5_7

    • Published:

    • Publisher Name: Springer, Singapore

    • Print ISBN: 978-981-10-5857-8

    • Online ISBN: 978-981-10-5858-5

    • eBook Packages: EngineeringEngineering (R0)

    Publish with us

    Policies and ethics