Skip to main content

Brain Imaging for Stroke

  • Chapter
  • First Online:
Translational Research in Stroke

Part of the book series: Translational Medicine Research ((TRAMERE))

  • 1150 Accesses

Abstract

Brain imaging (neuroradiology) is a subspecialty of radiology. Benefiting from the newly emerging radiological techniques, neuroradiology has greatly broadened our understanding on diagnosis, characterization, and mechanism of central nervous diseases, especially stroke. Brain reperfusion therapy is the most convincing treatment in acute ischemic stroke. It is of great importance to prudently select patients potentially benefiting from reperfusion therapy and minimize reperfusion injuries, not only in clinical practice but also in demanding insights from basic research. Neuroradiology is thereby a bridge translating basic research results to clinical applications, and clinical neuroradiological findings could in turn help to apprehend underlying disease mechanism.

In this chapter, we are going to discuss the main neuroradiological advances on translational research in stroke. Firstly, we introduce basic radiological methods and techniques for stroke research briefly. Then, we discuss the core concept in stroke imaging: penumbra and collateral vessel imaging, which are important characteristics in patient selection for reperfusion therapy. Finally, we talk about the reperfusion injury and introduce some useful radiological markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

AIF:

Arterial input function

AIS:

Acute ischemic stroke

ASITN/SIR:

American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology

ASL:

Arterial spin labeling

ATP:

Adenosine triphosphate

BBB:

Blood-brain barrier

CAT:

Computerized axial tomography

CBF:

Cerebral blood flow

CBV:

Cerebral blood volume

CMBG:

Cerebral metabolic rate of glucose

CMRO2 :

Cerebral metabolic rate of oxygen

CPP:

Cerebral perfusion pressure

CT:

Computed tomography

CTA:

CT angiography

CTP:

CT perfusion

CTV:

CT venography

DCE:

Dynamic contrast enhanced

DEFUSE:

Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution

DEFUSE2:

Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution 2

DSA:

Digital subtraction angiography

DSC:

Dynamic susceptibility contrast

DTI:

Diffusion tensor imaging

DWI:

Diffusion-weighted imaging

ECASS-4:

European Cooperative Acute Stroke Study-4

EEG:

Electroencephalogram

EPITHET:

Echoplanar Imaging Thrombolytic Evaluation Trial

FDG:

Fluorodeoxyglucose

FLAIR:

Fluid-attenuated inversion recovery

GRE:

Gradient echo

HARDI:

High-angular resolution diffusion imaging

HARM:

Hyper-intense acute reperfusion marker

HI:

Hemorrhagic infarction

HT:

Hemorrhagic transformation

HU:

Hounsfield unit

ICP:

Intracranial pressure

MAP:

Mean arterial pressure

MCA:

Middle cerebral artery

MCAO:

Middle cerebral artery occlusion

MMP:

Matrix metalloproteinase

MR:

Magnetic resonance

MRA:

MR angiography

MRI:

Magnetic resonance imaging

MRP:

MR perfusion

MRS:

MR spectroscopy

MRV:

MR venography

MTT:

Mean transit time

NAA:

N-Acetylaspartate

NCCT:

Non-contrast CT

NIHSS:

National Institutes of Health Stroke Scale

OEF:

Oxygen extraction fraction

PET:

Positron emission tomography

PH:

Parenchymal hemorrhage

PWI:

Perfusion-weighted imaging

QMRA:

Quantitative MRA

rt-PA:

Recombinant tissue plasminogen activator

SPECT:

Single-photon emission computed tomography

SWI:

Susceptibility weighted imaging

TOF:

Time of flight

TTP:

Time to peak

VLCBV:

Very low CBV

References

  1. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7.

    Article  PubMed  Google Scholar 

  2. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med. 2002;48(4):577–82.

    Article  PubMed  Google Scholar 

  3. Tuch DS. Q-ball imaging. Magn Reson Med. 2004;52(6):1358–72.

    Article  PubMed  Google Scholar 

  4. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  5. Sharbrough FW, Messick JM Jr, Sundt TM Jr. Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke J Cereb Circ. 1973;4(4):674–83.

    Article  CAS  Google Scholar 

  6. Branston NM, Symon L, Crockard HA, Pasztor E. Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol. 1974;45(2):195–208.

    Article  CAS  PubMed  Google Scholar 

  7. Branston NM, Symon L, Crockard HA. Recovery of the cortical evoked response following temporary middle cerebral artery occlusion in baboons: relation to local blood flow and PO2. Stroke J Cereb Circ. 1976;7(2):151–7.

    Article  CAS  Google Scholar 

  8. Astrup J, Symon L, Branston NM, Lassen NA. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke J Cereb Circ. 1977;8(1):51–7.

    Article  CAS  Google Scholar 

  9. Butcher KS, Parsons M, MacGregor L, Barber PA, Chalk J, Bladin C, et al. Refining the perfusion-diffusion mismatch hypothesis. Stroke J Cereb Circ. 2005;36(6):1153–9.

    Article  CAS  Google Scholar 

  10. Bivard A, Levi C, Spratt N, Parsons M. Perfusion CT in acute stroke: a comprehensive analysis of infarct and penumbra. Radiology. 2013;267(2):543–50.

    Article  PubMed  Google Scholar 

  11. Kim SJ, Son JP, Ryoo S, Lee MJ, Cha J, Kim KH, et al. A novel magnetic resonance imaging approach to collateral flow imaging in ischemic stroke. Ann Neurol. 2014;76(3):356–69.

    Article  PubMed  Google Scholar 

  12. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. New Engl J Med. 2008;359(13):1317–29.

    Article  CAS  PubMed  Google Scholar 

  13. Sandercock P, Wardlaw JM, Lindley RI, Dennis M, Cohen G, Murray G, et al. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial. Lancet (London, England). 2012;379(9834):2352–63.

    Article  Google Scholar 

  14. Darby DG, Barber PA, Gerraty RP, Desmond PM, Yang Q, Parsons M, et al. Pathophysiological topography of acute ischemia by combined diffusion-weighted and perfusion MRI. Stroke J Cereb Circ. 1999;30(10):2043–52.

    Article  CAS  Google Scholar 

  15. Heiss WD, Huber M, Fink GR, Herholz K, Pietrzyk U, Wagner R, et al. Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood F Met. 1992;12(2):193–203.

    Article  CAS  Google Scholar 

  16. Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol. 2006;60(5):508–17.

    Article  PubMed  Google Scholar 

  17. Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A, et al. Effects of alteplase beyond 3 h after stroke in the echoplanar imaging thrombolytic evaluation trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol. 2008;7(4):299–309.

    Article  PubMed  Google Scholar 

  18. Amiri H, Bluhmki E, Bendszus M, Eschenfelder CC, Donnan GA, Leys D, et al. European cooperative acute stroke study-4: extending the time for thrombolysis in emergency neurological deficits ECASS-4: ExTEND. Int J Stroke: Off J Int Stroke Soc. 2016;11(2):260–7.

    Article  Google Scholar 

  19. Latour LL, Kang DW, Ezzeddine MA, Chalela JA, Warach S. Early blood-brain barrier disruption in human focal brain ischemia. Ann Neurol. 2004;56(4):468–77.

    Article  PubMed  Google Scholar 

  20. Warach S, Latour LL. Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood-brain barrier disruption. Stroke J Cereb Circ. 2004;35(11 Suppl 1):2659–61.

    Article  Google Scholar 

  21. Heiss WD, Graf R, Lottgen J, Ohta K, Fujita T, Wagner R, et al. Repeat positron emission tomographic studies in transient middle cerebral artery occlusion in cats: residual perfusion and efficacy of postischemic reperfusion. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 1997;17(4):388–400.

    Article  CAS  Google Scholar 

  22. Tamura A, Asano T, Sano K. Correlation between rCBF and histological changes following temporary middle cerebral artery occlusion. Stroke J Cere Circ. 1980;11(5):487–93.

    Article  CAS  Google Scholar 

  23. Kidwell CS, Saver JL, Mattiello J, Starkman S, Vinuela F, Duckwiler G, et al. Diffusion-perfusion MRI characterization of post-recanalization hyperperfusion in humans. Neurology. 2001;57(11):2015–21.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang RL, Chopp M, Chen H, Garcia JH. Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. J Neurol Sci. 1994;125(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  25. Bednar MM, Raymond S, McAuliffe T, Lodge PA, Gross CE. The role of neutrophils and platelets in a rabbit model of thromboembolic stroke. Stroke J Cereb Circ. 1991;22(1):44–50.

    Article  CAS  Google Scholar 

  26. Olah L, Wecker S, Hoehn M. Secondary deterioration of apparent diffusion coefficient after 1-hour transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2000;20(10):1474–82.

    Article  CAS  Google Scholar 

  27. Fiorelli M, Bastianello S, von Kummer R, del Zoppo GJ, Larrue V, Lesaffre E, et al. Hemorrhagic transformation within 36 hours of a cerebral infarct – relationships with early clinical deterioration and 3-month outcome in the European Cooperative Acute Stroke Study I (ECASS I) cohort. Stroke. 1999;30(11):2280–4.

    Article  CAS  PubMed  Google Scholar 

  28. Molina CA, Montaner J, Abilleira S, Ibarra B, Romero F, Arenillas JF, et al. Timing of spontaneous recanalization and risk of hemorrhagic transformation in acute cardioembolic stroke. Stroke J Cereb Circ. 2001;32(5):1079–84.

    Article  CAS  Google Scholar 

  29. Butcher K, Christensen S, Parsons M, De Silva DA, Ebinger M, Levi C, et al. Postthrombolysis blood pressure elevation is associated with hemorrhagic transformation. Stroke J Cereb Circ. 2010;41(1):72–7.

    Article  Google Scholar 

  30. Tong DC, Adami A, Moseley ME, Marks MP. Prediction of hemorrhagic transformation following acute stroke: role of diffusion- and perfusion-weighted magnetic resonance imaging. Arch Neurol. 2001;58(4):587–93.

    Article  CAS  PubMed  Google Scholar 

  31. Whiteley WN, Slot KB, Fernandes P, Sandercock P, Wardlaw J. Risk factors for intracranial hemorrhage in acute ischemic stroke patients treated with recombinant tissue plasminogen activator: a systematic review and meta-analysis of 55 studies. Stroke J Cereb Circ. 2012;43(11):2904–9.

    Article  CAS  Google Scholar 

  32. Strbian D, Engelter S, Michel P, Meretoja A, Sekoranja L, Ahlhelm FJ, et al. Symptomatic intracranial hemorrhage after stroke thrombolysis: the SEDAN score. Ann Neurol. 2012;71(5):634–41.

    Article  PubMed  Google Scholar 

  33. Lou M, Safdar A, Mehdiratta M, Kumar S, Schlaug G, Caplan L, et al. The HAT score: a simple grading scale for predicting hemorrhage after thrombolysis. Neurology. 2008;71(18):1417–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vo KD, Santiago F, Lin W, Hsu CY, Lee Y, Lee JM. MR imaging enhancement patterns as predictors of hemorrhagic transformation in acute ischemic stroke. AJNR Am J Neuroradiol. 2003;24(4):674–9.

    PubMed  Google Scholar 

  35. Aviv RI, d'Esterre CD, Murphy BD, Hopyan JJ, Buck B, Mallia G, et al. Hemorrhagic transformation of ischemic stroke: prediction with CT perfusion. Radiology. 2009;250(3):867–77.

    Article  PubMed  Google Scholar 

  36. Tong DC, Adami A, Moseley ME, Marks MP. Relationship between apparent diffusion coefficient and subsequent hemorrhagic transformation following acute ischemic stroke. Stroke J Cereb Circ. 2000;31(10):2378–84.

    Article  CAS  Google Scholar 

  37. Bang OY, Saver JL, Kim SJ, Kim GM, Chung CS, Ovbiagele B, et al. Collateral flow averts hemorrhagic transformation after endovascular therapy for acute ischemic stroke. Stroke J Cereb Circ. 2011;42(8):2235–9.

    Article  Google Scholar 

  38. Campbell BC, Christensen S, Parsons MW, Churilov L, Desmond PM, Barber PA, et al. Advanced imaging improves prediction of hemorrhage after stroke thrombolysis. Ann Neurol. 2013;73(4):510–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mishra NK, Christensen S, Wouters A, Campbell BC, Straka M, Mlynash M, et al. Reperfusion of very low cerebral blood volume lesion predicts parenchymal hematoma after endovascular therapy. Stroke J Cereb Circ. 2015;46(5):1245–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Lou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cao, J., Lou, M. (2017). Brain Imaging for Stroke. In: Lapchak, P., Yang, GY. (eds) Translational Research in Stroke. Translational Medicine Research. Springer, Singapore. https://doi.org/10.1007/978-981-10-5804-2_6

Download citation

Publish with us

Policies and ethics