Skip to main content

Microfungi for the Removal of Toxic Triphenylmethane Dyes

  • Chapter
  • First Online:
Mining of Microbial Wealth and MetaGenomics

Abstract

Triphenylmethane (TPM) dyes are a group of aromatic, synthetic dyes used widely in industrial processes. The discharge of these dyes into the environment demands strict monitoring and treatment due to their toxicity and cancer-inducing possibilities. The inexpensive, environmental-friendly biological treatment of TPM dyes using microfungi is an attractive remediation approach compared to the conventional physico-chemical methods. A diverse population of microfungi (comprising of members with microscopic fruiting bodies), such as white-rot and non-white-rot fungi, have demonstrated potential in removing TPM dyes via biosorption and biodegradation. Enzymes involved in dye decolourization include laccase, lignin peroxidase, manganese peroxidase and reductases. The biosorption and biodegradation activities of microfungi are influenced by nutrients, pH, temperature, initial dye concentration and biomass concentration. This chapter discusses the various strains of microfungi with TPM dye-decolourizing potential, as well as their mechanisms, optimum conditions and some current technological applications for these useful microfungi to remove TPM dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Lac:

Laccase

LiP:

Lignin peroxidase

MnP:

Manganese peroxidase

MS:

Mass spectroscopy

TPM:

Triphenylmethane

References

  • Abedin RMA (2008) Decolourization and Biodegradation of crystal violet and malachite green by Fusarium solani (Martius) Saccardo. A comparative study on biosorption of dyes by the dead fungal biomass. Am Eurasian J Bot 1:17–31

    Google Scholar 

  • Abu Hassan MA, Tan PL, Noor ZZ (2009) Coagulation and flocculation treatment of wastewater in textile industry using chitosan. J Chem Nat Resour Eng 4:43–53

    Google Scholar 

  • Aidoo A, Gao N, Neft RE, Schol HM, Hass BS, Minor TY, Heflich RH (1990) Evaluation of the genotoxicity of gentian violet in bacterial and mammalian cell systems. Teratog Carcinog Mutagen 10:449–462. doi:10.1002/tcm.1770100604

    Article  CAS  PubMed  Google Scholar 

  • Almeida EJ, Corso CR (2014) Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere 112:317–322. doi:10.1016/j.chemosphere.2014.04.060

    Article  CAS  PubMed  Google Scholar 

  • Arica MY, BayramoÄŸlu G (2007) Biosorption of Reactive Red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju. J Hazard Mater 149(2):499–507. doi:10.1016/j.jhazmat.2007.04.021

    Article  CAS  PubMed  Google Scholar 

  • Asgher M (2012) Biosorption of reactive dyes: a review. Water Air Soil Pollut 223:2417–2435. doi:10.1007/s11270-011-1034-z

    Article  CAS  Google Scholar 

  • Azizian S, Haerifar M, Bashiri H (2009) Adsorption of methyl violet onto granular activated carbon: equilibrium, kinetics and modeling. Chem Eng J 146:36–41. doi:10.1016/j.cej.2008.05.024

    Article  CAS  Google Scholar 

  • Bhole BD, Ganguly B, Madhuram A, Deshpande D, Joshi J (2004) Biosorption of methyl violet, basic fuchsin and their mixture using dead fungal biomass. Curr Sci 86:1641–1645

    CAS  Google Scholar 

  • Bose B, Gour RR, Motiwale L, Rao KV (2006) Decreased phosphoactive ERKs and JNKs in Malachite-green-transformed Syrian hamster embryo fibroblasts are associated with increased phosphoactive p38 kinase: possible therapeutic importance. Chemotherapy 52:210–214. doi:10.1159/000093038

    Article  CAS  PubMed  Google Scholar 

  • Bumpus JA, Brock BJ (1988) Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54(5):1143–1150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casas N, Parella T, Vicent T, Caminal G, Sarrà M (2009) Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase. Chemosphere 75(10):1344–1349. doi:10.1016/j.chemosphere.2009.02.029

    Article  CAS  PubMed  Google Scholar 

  • Cha C-J, Doerge DR, Cerniglia CE (2001) Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl Environ Microbiol 67(9):4358–4360. doi:10.1128/aem.67.9.4358-4360.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S, Basak B, Dutta S, Bhunia B, Dey A (2013) Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6. Bioresour Technol 147:662–666. doi:10.1016/j.biortech.2013.08.117

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry MT, Zohaib M, Rauf N, Tahir SS, Parvez S (2014) Biosorption characteristics of Aspergillus fumigatus for the decolorization of triphenylmethane dye acid violet 49. Appl Microbiol Biotechnol 98:3133–3141. doi:10.1007/s00253-013-5306-y

    Article  CAS  PubMed  Google Scholar 

  • Chen SH, Ting ASY (2015a) Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost. J Environ Manag 150:274–280. doi:10.1016/j.jenvman.2014.09.014

    Article  CAS  Google Scholar 

  • Chen SH, Ting ASY (2015b) Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample. Int Biodeter Biodegr 103:1–7. doi:10.1016/j.ibiod.2015.04.004

    Article  CAS  Google Scholar 

  • Chew SY, Ting ASY (2015) Common filamentous Trichoderma asperellum for effective removal of triphenylmethane dyes. Desalin Water Treat 57. doi:10.1080/19443994.2015.1060173

  • Chi Z, Liu R, Zhao X, Sun Y, Yang B, Gao C (2009) Study on the genotoxic interaction of methyl violet with calf thymus DNA. Appl Spectrosc 63:1331–1335. doi:10.1366/000370209790109085

    Article  CAS  PubMed  Google Scholar 

  • Dahri MK, Kooh MRR, Lim LBL (2014) Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies. J Environ Chem Eng 2:1434–1444. doi:10.1016/j.jece.2014.07.008

    Article  CAS  Google Scholar 

  • Denoyes B, Baudry A (1995) Species identification and pathogenicity study of French Colletotrichum strains isolated from strawberry using morphological and cultural characteristics. Phytopathology 85:53–57. doi:10.1094/phyto-85-53

    Article  Google Scholar 

  • dos Santos Bazanella GC, de Souza DF, Castoldi R, Oliveira RF, Bracht A, Peralta RM (2013) Production of laccase and manganese peroxidase by Pleurotus pulmonarius in solid-state cultures and application in dye decolorization. Folia Microbiol (Praha) 58:641–647. doi:10.1007/s12223-013-0253-7

    Article  Google Scholar 

  • Elisangela F, Andrea Z, Fabio DG, de Menezes Cristiano R, Regina DL, Artur C-P (2009) Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Int Biodeter Biodegr 63(3):280–288. doi:10.1016/j.ibiod.2008.10.003

    Article  CAS  Google Scholar 

  • Fu Y, Viraraghavan T (2002) Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Adv Environ Res 7:239–247. doi:10.1016/s1093-0191(01)00123-x

    Article  CAS  Google Scholar 

  • Gao F, Ding H, Shao L, Xu X, Zhao Y (2015) Molecular characterization of a novel thermal stable reductase capable of decoloration of both azo and triphenylmethane dyes. Appl Microbiol Biotechnol 99:255–267. doi:10.1007/s00253-014-5896-z

    Article  CAS  PubMed  Google Scholar 

  • Glenn JK, Gold MH (1983) Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 45(6):1741–1747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomaa OM, Linz JE, Reddy CA (2008) Decolorization of Victoria blue by the white rot fungus, Phanerochaete chrysosporium. World J Microbiol Biotechnol 24:2349–2356. doi:10.1007/s11274-008-9750-2

    Article  Google Scholar 

  • Gomashe A, Suriya SS, Dharmik PG (2011) Decolorisation of textile dyes by Aspergillus ochraceus (NCIM-1146). Ecoscan 5(3–4):169–171

    CAS  Google Scholar 

  • Gómez J, Pazos M, Couto SR, Sanromán MA (2005) Chestnut shell and barley bran as potential substrates for laccase production by Coriolopsis rigida under solid-state conditions. J Food Eng 68:315–319. doi:10.1016/j.jfoodeng.2004.06.005

    Article  Google Scholar 

  • Grinevicius VM, Geremias R, Laus R, Bettega KF, Laranjeiras MC, Fávere VT, Wilhelm Filho D, Pedrosa RC (2009) Textile effluents induce biomarkers of acute toxicity, oxidative stress, and genotoxicity. Arch Environ Contam Toxicol 57:307–314. doi:10.1007/s00244-008-9263-x

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Mittal A, Krishnan L, Mittal J (2006) Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya. J Colloid Interface Sci 293:16–26. doi:10.1016/j.jcis.2005.06.021

    Article  CAS  PubMed  Google Scholar 

  • Halimoon N, Goh RSY (2010) Removal of heavy metals from textile wastewater using Zeolite. Environ Asia 3:124–130

    Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192. doi:10.1038/nrmicro2519

    Article  CAS  PubMed  Google Scholar 

  • Haroun M, Idris A (2009) Treatment of textile wastewater with an anaerobic fluidized bed reactor. Desalination 237(1–3):357–366. doi:10.1016/j.desal.2008.01.027

    Article  CAS  Google Scholar 

  • Hemmati F, Norouzbeigi R, Sarbisheh F, Shayesteh H (2016) Malachite green removal using modified sphagnum peat moss as a low-cost biosorbent: kinetic, equilibrium and thermodynamic studies. J Taiwan Inst Chem Eng 58:482–489. doi:10.1016/j.jtice.2015.07.004

    Article  CAS  Google Scholar 

  • Hutwimmer S, Wang H, Strasser H, Burgstaller W (2010) Formation of exudate droplets by Metarhizium anisopliae and the presence of destruxins. Mycologia 102:1–10. doi:10.3852/09-079

    Article  CAS  PubMed  Google Scholar 

  • Jadhav JP, Govindwar SP (2006) Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast 23:315–323. doi:10.1002/yea.1356

    Article  CAS  PubMed  Google Scholar 

  • JasiÅ„ska A, Różalska S, Bernat P, Paraszkiewicz K, DÅ‚ugoÅ„ski J (2012) Malachite green decolorization by non-basidiomycete filamentous fungi of Penicillium pinophilum and Myrothecium roridum. Int Biodeter Biodegr 73:33–40. doi:10.1016/j.ibiod.2012.06.025

    Article  Google Scholar 

  • JasiÅ„ska A, Paraszkiewicz K, Sip A, DÅ‚ugoÅ„ski J (2015) Malachite green decolorization by the filamentous fungus Myrothecium roridum—mechanistic study and process optimization. Bioresour Technol 194:43–48. doi:10.1016/j.biortech.2015.07.008

    Article  PubMed  Google Scholar 

  • Kabra AN, Khandare RV, Waghmode TR, Govindwar SP (2012) Phytoremediation of textile effluent and mixture of structurally different dyes by Glandularia pulchella (Sweet) Tronc. Chemosphere 87:265–272. doi:10.1016/j.chemosphere.2011.12.052

    Article  CAS  PubMed  Google Scholar 

  • Khataee AR, Dehghan G, Zarei M, Ebadi E, Pourhassan M (2011) Neural network modeling of biotreatment of triphenylmethane dye solution by a green macroalgae. Chem Eng Res Des 89:172–178. doi:10.1016/j.cherd.2010.05.009

    Article  CAS  Google Scholar 

  • Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AF, Tedersoo L, VrÃ¥lstad T, Ursing BM (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068. doi:10.1111/j.1469-8137.2005.01376.x

    Article  PubMed  Google Scholar 

  • Kumar CG, Mongolla P, Basha A, Joseph J, Sarma VUM, Kamal A (2011) Decolorization and biotransformation of triphenylmethane dye, methyl violet, by Aspergillus sp. isolated from Ladakh, India. J Microbiol Biotechnol 21:267–273

    CAS  PubMed  Google Scholar 

  • Kumar CG, Mongolla P, Joseph J, Sarma VUM (2012) Decolorization and biodegradation of triphenylmethane dye, brilliant green, by Aspergillus sp. isolated from Ladakh, India. Process Biochem 47:1388–1394. doi:10.1016/j.procbio.2012.05.015

    Article  CAS  Google Scholar 

  • Levin L, Papinutti L, Forchiassin F (2004) Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Bioresour Technol 94:169–176. doi:10.1016/j.biortech.2003.12.002

    Article  CAS  PubMed  Google Scholar 

  • Levin L, Melignani E, Ramos AM (2010) Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresour Technol 101:4554–4563. doi:10.1016/j.biortech.2010.01.102

    Article  CAS  PubMed  Google Scholar 

  • Li P, Su YJ, Wang Y, Liu B, Sun LM (2010) Bioadsorption of methyl violet from aqueous solution onto Pu-erh tea powder. J Hazard Mater 179:43–48. doi:10.1016/j.jhazmat.2010.02.054

    Article  CAS  PubMed  Google Scholar 

  • Lim SL, Chu WL, Phang SM (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101:7314–7322. doi:10.1016/j.biortech.2010.04.092

    Article  CAS  PubMed  Google Scholar 

  • Liu WX, Chao YP, Yang XQ, Bao HB, Qian SJ (2004) Biodecolorization of azo, anthraquinonic and triphenylmethane dyes by white-rot fungi and a laccase-secreting engineered strain. J Ind Microbiol Biotechnol 31:127–132. doi:10.1007/s10295-004-0123-z

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Zhao M, Liang SC, Zhao LY, Li DB, Zhang BB (2009) Production and synthetic dyes decolourization capacity of a recombinant laccase from Pichia pastoris. J Appl Microbiol 107:1149–1156. doi:10.1111/j.1365-2672.2009.04291.x

    Article  CAS  PubMed  Google Scholar 

  • Maas R, Chaudhari S (2005) Adsorption and biological decolourization of azo dye Reactive Red 2 in semicontinuous anaerobic reactors. Process Biochem 40:699–705. doi:10.1016/j.procbio.2004.01.038

    Article  CAS  Google Scholar 

  • Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270. doi:10.1002/yea.1208

    Article  CAS  PubMed  Google Scholar 

  • Malik R, Ramteke DS, Wate SR (2007) Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Manag 27:1129–1138. doi:10.1016/j.wasman.2006.06.009

    Article  CAS  PubMed  Google Scholar 

  • Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5:28. doi:10.1186/1471-2180-5-28

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittal A (2006) Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers. J Hazard Mater 133:196–202. doi:10.1016/j.jhazmat.2005.10.017

    Article  CAS  PubMed  Google Scholar 

  • Mittal A, Gajbe V, Mittal J (2008) Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials. J Hazard Mater 150:364–375. doi:10.1016/j.jhazmat.2007.04.117

    Article  CAS  PubMed  Google Scholar 

  • Moturi B, Singara Charya MA (2009) Decolourisation of crystal violet and malachite green by fungi. Sci World J 4:28–33. doi:10.4314/swj.v4i4.53585

    Google Scholar 

  • Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H (2008) Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform Online 4:193–201. doi:10.4137/EBO.S653

    PubMed  PubMed Central  Google Scholar 

  • Nishiya Y, Yamamoto Y (2007) Characterization of a NADH:dichlorophenol oxidoreductase from Bacillus subtilis. Biosci Biotechnol Biochem 71:611–614. doi:10.1271/bbb.60548

    Article  CAS  PubMed  Google Scholar 

  • Novotný ÄŒ, Svobodová K, Kasinath A, Erbanová P (2004) Biodegradation of synthetic dyes by Irpex lacteus under various growth conditions. Int Biodeter Biodegr 54:215–223. doi:10.1016/j.ibiod.2004.06.003

    Article  Google Scholar 

  • Ogunlaja OO, Aemere O (2009) Evaluating the efficiency of a textile wastewater treatment plant located in Oshodi, Lagos. Afr J Pure Appl Chem 3:189–196

    CAS  Google Scholar 

  • Osma JF, Herrera JLT, Couto SR (2007) Banana skin: a novel waste for laccase production by Trametes pubescens under solid-state conditions. Application to synthetic dye decolouration. Dyes Pigments 75:32–37. doi:10.1016/j.dyepig.2006.05.021

    Article  CAS  Google Scholar 

  • Papinutti VL, Forchiassin F (2004) Modification of malachite green by Fomes sclerodermeus and reduction of toxicity to Phanerochaete chrysosporium. FEMS Microbiol Lett 231:205–209. doi:10.1016/s0378-1097(03)00957-1

    Article  CAS  PubMed  Google Scholar 

  • Patel R, Suresh S (2008) Kinetic and equilibrium studies on the biosorption of reactive black 5 dye by Aspergillus foetidus. Bioresour Technol 99:51–58. doi:10.1016/j.biortech.2006.12.003

    Article  CAS  PubMed  Google Scholar 

  • Pointing SB, Vrijmoed LLP (2000) Decolorization of azo and triphenylmethane dyes by Pycnoporus sanguineus producing laccase as the sole phenoloxidase. World J Microbiol Biotechnol 16:317–318. doi:10.1023/A:1008959600680

    Article  CAS  Google Scholar 

  • Pokharia A, Ahluwalia SS (2013) Isolation and screening of dye decolorizing bacterial isolates from contaminated sites. Text Light Ind Sci Technol 2:54–61. doi:10.12691/jaem-2-5-7

    Google Scholar 

  • Radha KV, Regupathi I, Arunagiri A, Murugesan T (2005) Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics. Process Biochem 40(10):3337–3345. doi:10.1016/j.procbio.2005.03.033

    Article  CAS  Google Scholar 

  • Rodrigues CSD, Madeira LM, Boaventura RAR (2013) Treatment of textile dye wastewaters using ferrous sulphate in a chemical coagulation/flocculation process. Environ Technol 34:719–729. doi:10.1080/09593330.2012.715679

    Article  CAS  PubMed  Google Scholar 

  • Rzeszutek K, Chow A (2001) Extraction of metal–dye ion-association complexes by thin ether-type polyurethane membranes. J Membr Sci 181:265–277. doi:10.1016/s0376-7388(00)00545-7

    Article  CAS  Google Scholar 

  • Saeed A, Iqbal M, Zafar SI (2009) Immobilization of Trichoderma viride for enhanced methylene blue biosorption: batch and column studies. J Hazard Mater 168:406–415. doi:10.1016/j.jhazmat.2009.02.058

    Article  CAS  PubMed  Google Scholar 

  • Sani RK, Azmi W, Banerjee UC (1998) Comparison of static and shake culture in the decolorization of textile dyes and dye effluents by PhanerochÅ“te chrysosporium. Folia Microbiol 43:85–88. doi:10.1007/bf02815550

    Article  CAS  Google Scholar 

  • Sedighi M, Karimi A, Vahabzadeh F (2009) Involvement of ligninolytic enzymes of Phanerochaete chrysosporium in treating the textile effluent containing Astrazon Red FBL in a packed-bed bioreactor. J Hazard Mater 169:88–93. doi:10.1016/j.jhazmat.2009.03.070

    Article  CAS  PubMed  Google Scholar 

  • Shedbalkar U, Jadhav JP (2011) Detoxification of malachite green and textile industrial effluent by Penicillium ochrochloron. Biotechnol Bioprocess Eng 16:196–204. doi:10.1007/s12257-010-0069-0

    Article  CAS  Google Scholar 

  • Shedbalkar U, Dhanve R, Jadhav J (2008) Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. J Hazard Mater 157:472–479. doi:10.1016/j.jhazmat.2008.01.023

    Article  CAS  PubMed  Google Scholar 

  • Sugano Y, Matsuo C, Shoda M (2001) Efficient production of a heterologous peroxidase, DyP from Geotrichum candidum Dec 1, on solid-state culture of Aspergillus oryzae RD005. J Biosci Bioeng 92:594–597. doi:10.1016/S1389-1723(01)80323-6

    Article  CAS  PubMed  Google Scholar 

  • Svecova L, Spanelova M, Kubal M, Guibak E (2006) Cadmium, lead and mercury biosorption on waste fungal biomass issued from fermentation industry. I. Equilibrium studies. Sep Purif Technol 52:142–153. doi:10.1016/j.seppur.2006.03.024

    Article  CAS  Google Scholar 

  • Tamayo-Ramos JA, van Berkel WJH, de Graaff LH (2012) Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger. Microb Cell Fact 11:165. doi:10.1186/1475-2859-11-165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan XY, Kyaw NN, Teo WK, Li K (2006) Decolorization of dye-containing aqueous solutions by the polyelectrolyte-enhanced ultrafiltration (PEUF) process using a hollow fiber membrane module. Sep Purif Technol 52:110–116. doi:10.1016/j.seppur.2006.03.028

    Article  CAS  Google Scholar 

  • Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U (2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188:291–301. doi:10.1111/j.1469-8137.2010.03373.x

    Article  CAS  PubMed  Google Scholar 

  • Tekere M, Mswaka AY, Zvauya R, Read JS (2001) Growth, dye degradation and ligninolytic activity studies on Zimbabwean white rot fungi. Enzym Microb Technol 28:420–426. doi:10.1016/s0141-0229(00)00343-4

    Article  CAS  Google Scholar 

  • Téllez-Jurado A, Arana-Cuenca A, González Becerra AE, Viniegra-González G, Loera O (2006) Expression of a heterologous laccase by Aspergillus niger cultured by solid-state and submerged fermentations. Enzyme Microb Technol 38:665–669. doi:10.1016/j.enzmictec.2005.07.021

    Article  Google Scholar 

  • Torres JMO, Cardenas CV, Moron LS, Guzman APA, Dela Cruz TEE (2011) Dye colorization activities of marine-derived fungi isolated from Manila Bay and Calatagan Bay, Philippines. Philipp J Sci 140:133–143

    Google Scholar 

  • Tsui CKM, Woodhall J, Chen W, Lévesque CA, Lau A, Schoen CD, Baschien C, Najafzadeh MJ, de Hoog GS (2011) Molecular techniques for pathogen identification and fungus detection in the environment. IMA Fungus 2:177–189. doi:10.5598/imafungus.2011.02.02.09

    Article  PubMed  PubMed Central  Google Scholar 

  • Turhan K, Durukan I, Ozturkcan SA, Turgut Z (2012) Decolorization of textile basic dye in aqueous solution by ozone. Dyes Pigments 92(3):897–901. doi:10.1016/j.dyepig.2011.07.012

    Article  CAS  Google Scholar 

  • Tychanowicz GK, Zilly A, de Souza CGM, Peralta RM (2004) Decolourisation of industrial dyes by solid-state cultures of Pleurotus pulmonarius. Process Biochem 39:855–859. doi:10.1016/s0032-9592(03)00194-8

    Article  CAS  Google Scholar 

  • Vasdev K, Kuhad RC, Saxena RK (1995) Decolorization of triphenylmethane dyes by the bird’s nest fungus Cyathus bulleri. Curr Microbiol 30:269–272. doi:10.1007/bf00295500

    Article  Google Scholar 

  • Vergili I, Kaya Y, Sen U, Göndera ZB, Aydiner C (2012) Techno-economic analysis of textile dye bath wastewater treatment by integrated membrane processes under the zero liquid discharge approach. Resour Conserv Recycl 58:25–35. doi:10.1016/j.resconrec.2011.10.005

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322. doi:10.1016/b978-0-12-372180-8.50042-1

    Google Scholar 

  • Yan K, Wang H, Zhang X, Yu H (2009) Bioprocess of triphenylmethane dyes decolorization by Pleurotus ostreatus BP under solid-state cultivation. J Microbiol Biotechnol 19:1421–1430. doi:10.4014/jmb.0901.0033

    Article  CAS  PubMed  Google Scholar 

  • Yan JP, Niu JZ, Chen DD, Chen YH, Irbis C (2014) Screening of Trametes strains for efficient decolorization of malachite green at high temperatures and ionic concentrations. Int Biodeter Biodegr 87:109–115. doi:10.1016/j.ibiod.2013.11.009

    Article  CAS  Google Scholar 

  • Yang Q, Li C, Li H, Li Y, Yu N (2009a) Degradation of synthetic reactive azo dyes and treatment of textile wastewater by a fungi consortium reactor. Biochem Eng J 43:225–230. doi:10.1016/j.bej.2008.10.002

    Article  CAS  Google Scholar 

  • Yang X, Zhao X, Liu C, Zheng Y, Qian S (2009b) Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase. Process Biochem 14:1185–1189. doi:10.1016/j.procbio.2009.06.015

    Article  Google Scholar 

  • Yang YY, Wang G, Wang G, Du LN, Jia XM, Zhao YH (2011) Decolorization of malachite green by a newly isolated Penicillium sp. YW 01 and optimization of decolorization parameters. Environ Eng Sci 28:555–562. doi:10.1089/ees.2010.0172

    Article  CAS  Google Scholar 

  • Zeroual Y, Kim BS, Kim CS, Blaghen M, Lee KM (2006a) A comparative study on biosorption characteristics of certain fungi for bromophenol blue dye. Appl Biochem Biotechnol 134:51–60. doi:10.1385/abab:134:1:51

    Article  CAS  PubMed  Google Scholar 

  • Zeroual Y, Kim BS, Kim CS, Blaghen M, Lee KM (2006b) Biosorption of Bromophenol Blue from aqueous solutions by Rhizopus Stolonifer biomass. Water Air Soil Pollut 177:135–146. doi:10.1007/s11270-006-9112-3

    Article  CAS  Google Scholar 

  • Zhang X, Liu Y, Yan K, Wu H (2007) Decolorization of anthraquinone-type dye by bilirubin oxidase-producing nonligninolytic fungus Myrothecium sp. IMER1. J Biosci Bioeng 104(2):104–110. doi:10.1263/jbb.104.104

    Article  CAS  PubMed  Google Scholar 

  • Zhou XJ, Guo WQ, Yang SS, Zheng HS, Ren NQ (2013) Ultrasonic-assisted ozone oxidation process of triphenylmethane dye degradation: evidence for the promotion effects of ultrasonic on malachite green decolorization and degradation mechanism. Bioresour Technol 128:827–830. doi:10.1016/j.biortech.2012.10.086

    Article  CAS  PubMed  Google Scholar 

  • Zhuo R, Ma L, Fan F, Gong Y, Wan X, Jiang M, Zhang X, Yang Y (2011) Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp.En3 and cloning and functional analysis of its laccase gene. J Hazard Mater 192:855–873. doi:10.1016/j.jhazmat.2011.05.106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the Malaysian Ministry of Higher Education for providing research funding under the FRGS grant scheme (FRGS/2/2013/STWN01/MUSM/02/2) and Monash University Malaysia for the funds and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeline Su Yien Ting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chen, S.H., Ting, A.S.Y. (2017). Microfungi for the Removal of Toxic Triphenylmethane Dyes. In: Kalia, V., Shouche, Y., Purohit, H., Rahi, P. (eds) Mining of Microbial Wealth and MetaGenomics. Springer, Singapore. https://doi.org/10.1007/978-981-10-5708-3_22

Download citation

Publish with us

Policies and ethics