Skip to main content

Fiber Reinforcement

  • Chapter
  • First Online:
Composite Materials Engineering, Volume 1
  • 2811 Accesses

Abstract

Composite materials mainly consist of matrixes (polymers, metals and ceramics) and reinforcements (continuous fibers, whiskers and particles) [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zou ZW (ed) (1999) Composite structures and properties. China Science Press, Beijing (in Chinese)

    Google Scholar 

  2. Chou TW (ed) (2000) Comprehensive composite materials, Volume 1: Fiber reinforcements and general theory of composites. Kelly A, Zweben C, Editors-in-Chief. Pergamon Press, Elsevier Science Ltd., Oxford

    Google Scholar 

  3. Hearle JWS (ed) (2001) High performance fibers. CRC Press, Woodhead Publishing Ltd., Cambridge

    Google Scholar 

  4. Zhang BD, Wu ZM (eds) (1998) Continuous glass fiber processing basics. China Architecture and Building Press, Beijing (in Chinese)

    Google Scholar 

  5. Editorial B (1993) Introduction to high technology materials. China Science Press, Beijing (in Chinese)

    Google Scholar 

  6. Morgan P (ed) (2005) Carbon fibers and their composites. CRC Press, Taylor & Francis Group, New York

    Google Scholar 

  7. Wu RJ (ed) (2000) Composites. Tianjin University Press, Tianjin (in Chinese)

    Google Scholar 

  8. Zhao JX (2001) A brief introduction to Nippon graphite fiber corporation, Japan. Jpn Hi-tech Fiber & Appl 26(4):28 (in Chinese)

    Google Scholar 

  9. Wo XY (2000) Comparison and elemental analysis of the performance of domestic and abroad carbon fiber. Hi-tech Fiber & Appl 25(2):30 (in Chinese)

    Google Scholar 

  10. Peebles LH, Yanovsky YG, Sirota AG, Bogdanov VV, Levit PM (1998) Mechanical properties of carbon fibers. In: Donnet JB, Wang TK, Peng JCM and Rebouillat S (eds) Carbon Fibers, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  11. Luo YF (2000) New developments in hi-tech synthetic fibers. Hi-tech Fiber & Appl 25(4):1 (in Chinese)

    Google Scholar 

  12. Zhang WX (2001) New development of polyacrylonitrile-based carbon fibers. Hi-tech Fiber & Appl 26(5):13 (in Chinese)

    Google Scholar 

  13. He F, Zhang JG (2000) The rapid development of carbon fiber industry. Hi-tech Fiber & Appl 25(4):11 (in Chinese)

    Google Scholar 

  14. Zhang HB, Liu HB, Xu ZY (2001) High temperature heat treatment technology prepared PAN-based high modulus carbon fibers. Hi-tech Fiber & Appl 26(3):6 (in Chinese)

    Google Scholar 

  15. Li SH (1992) Preparation of high strength and high modulus polyacrylonitrile-based carbon fibers. Carbon Tech 5:39 (in Chinese)

    Google Scholar 

  16. Li RY (1982) Preparation of HS-I type polyacrylonitrile-based carbon fibers. China Synth Fiber Ind 2:15 (in Chinese)

    Google Scholar 

  17. Beijing University of Chemical Technology (2001) Newsletter: Preparation of polyacrylonitrile fibers via DMSO. Hi-tech Fiber & Appl 26(2):48 (in Chinese)

    Google Scholar 

  18. Chang WP (1996) Newsletter: Preparation of high modulus of carbon fibers. New Carbon Mater 11(11):19 (in Chinese)

    Google Scholar 

  19. Yu SF (1992) Composition and structure characterization of raw materials for high-performance pitch-based carbon fibers. New Carbon Mater 7(4):25 (in Chinese)

    Google Scholar 

  20. Shi Y, Cha QF, Liu L (1995) Melt spinning of Y-shaped pitch-based carbon fiber. New Carbon Mater 10(3):33 (in Chinese)

    Google Scholar 

  21. Gu W, Pan D (1996) Rayon-based carbon fiber. New Carbon Mater 11(3):10 (in Chinese)

    Google Scholar 

  22. Li XD, Peng P (1999) Preparation of rayon-based carbon fiber infiltrated with SiC coating. New Carbon Mater 14(3):41 (in Chinese)

    Google Scholar 

  23. Feng CX, Fan XL, Song YC (1999) Prospect and challenge of high performance fibers in the 21 century. Part I, silicon-based ceramic fibers. Hi-tech Fiber & Appl 24(3):8 (in Chinese)

    Google Scholar 

  24. Feng CX, Fan XL, Cao F (1999) Prospect and challenge of high performance fibers in the 21 century. Part II, aluminum-based oxide fibers. Hi-tech Fiber & Appl 24(6):8 (in Chinese)

    Google Scholar 

  25. Song YC, Feng CX, Xue JG (2002) The progress of research on silicon nitride fiber. Hi-tech Fiber & Appl 27(2):6 (in Chinese)

    Google Scholar 

  26. Bunsell AR, Piant A (2006) A review of the development of three generations of small diameter silicon carbide fibers. J Mater Sci 41:823

    Article  Google Scholar 

  27. Chu ZY, Feng CX, Song YC, Xiao JY, Li XD, Wang YD (2002) Advances in polymer-derived SiC fibers. J Inorg Mater 17(2):193 (in Chinese)

    Google Scholar 

  28. Gareis PJ, Mohr PH (1961) Process for depositing beta SiC. US Patent 3011912

    Google Scholar 

  29. Shi NL (2000) Preparation of high performance CVD SiC filaments. Mater Rev 14(7):53 (in Chinese)

    Google Scholar 

  30. Ichikawa H (2006) Development of high performance SiC fibers derived from polycarbosilane using electron beam irradiation curing, a review. J Ceram Soc Jpn 114(6):455

    Article  Google Scholar 

  31. Chu ZY, Wang L, Song YC, Xu YS, Fu YB (2001) Synthesis and irradiation crosslinking reaction of polysilazane fibers. Polym Mater Sci & Eng 17(4):37 (in Chinese)

    Google Scholar 

  32. Hasegawa Y, Feng CX, Song YC, Tan ZL (1991) Ceramic fibers from polymer precursor containing Si-O-Ti bonds. J Mater Sci 26(13):3657

    Article  Google Scholar 

  33. Wang YF, Feng CX, Song YC (1999) Study of the preparation and electric properties of Si-Ti-C-O fibers. Chin High Technol Lett 9(5):45 (in Chinese)

    Google Scholar 

  34. Yu YX, Tai JH, Tang XY, Guo YD, Tang M, Li XD (2008) Continuous Si-C-O-Al fiber derived from aluminum-containing polycarbosilane precursor. Compos A 39:1101

    Article  Google Scholar 

  35. Tang Y, Wang J, Li XD, Li WH, Wang H, Xie ZF (2008) Synthesis and characterization of polyborosilazane as novel precursor to SiBNC ceramic. Acta Chim Sin 66(11):371 (in Chinese)

    Google Scholar 

  36. Tang Y, Wang J, Li XD, Xie ZF, Wang H, Li WH, Wang XZ (2010) Polymer-derived SiBN fiber for high-temperature structural/functional applications. Chem A Eur J 22(16):6458

    Article  Google Scholar 

  37. Yamamura T, Ishikawa T, Shibuya M (1990) Electromagnetic wave absorbing material. US Patent 5094907

    Google Scholar 

  38. Wang YD, Feng CX, Wang J, Song YC, Wang J, Yao M, He YC, Xue JG, Long JF (2001) Preparation of trilobal SiC fibers with radar-absorbing properties. Acta Mater Compos Sinica 18(1):42 (in Chinese)

    Google Scholar 

  39. Feng CX, Liu J, Song YC (2001) Preparation of SiC fibers with low electrical resistance by simple mixing. J Funct Mater 32(4):269 (in Chinese)

    Google Scholar 

  40. Wang J, Song YC, Feng CX (1997) Preparation of a mixed SiC fiber for microwave absorbent. Aerosp Mater & Technol 27(4):61 (in Chinese)

    Google Scholar 

  41. Wang J, Feng CX, Song YC (1996) Preparation of SiC Ceramic fiber mixed with nano Ni particle. Chin High Technol Lett 6(11):33 (in Chinese)

    Google Scholar 

  42. Ouyang GE, Liu XW (1994) Preparation of SiC-C fibers. J Funct Mater 25(4):300 (in Chinese)

    Google Scholar 

  43. Re W, Zhang QW (1991) Approaches to improve mechanical properties of BN fibers. Chin High Technol Lett 1(10):3 (in Chinese)

    Google Scholar 

  44. Cornu D, Bernard S, Duperrier S, Toury B, Miele P (2005) Alkylaminoborazine-based precursors for the preparation of BN fibers by the polymer-derived ceramics (PDCs) route. J Eur Ceram Soc 25(2–3):111

    Article  Google Scholar 

  45. Kotek R (2008) Recent advances in polymer fibers. Polym Rev 48(2):221

    Article  Google Scholar 

  46. Wo DZ (ed) (2000) Comprehensive Composites. China Science Press, Beijing (in Chinese)

    Google Scholar 

  47. Huang XC, Zhang JC (2000) The present and the development trend of the high-strength & high-modulus aramid fibers of Russia. Hi-tech Fiber & Appl 25(1):14 (in Chinese)

    Google Scholar 

  48. Luo YF (2002) Look around the recent R&D in world’s high-tech fibers. Hi-tech Fiber & Appl 27(3):7 (in Chinese)

    Google Scholar 

  49. Afshari M, Sikkema DJ, Lee K, Bogle M (2008) High performance fibers based on rigid and flexible polymers. Polym Rev 48(2):230

    Article  Google Scholar 

  50. Wang DR (2001) Application and synthesize technics of transform PBO. Hi-tech Fiber & Appl 26(6):27 (in Chinese)

    Google Scholar 

  51. Li ZJ (2000) The high-powered UHMWPE fiber and its applications foreground in ground radome. Hi-tech Fiber & Appl 25(4):24 (in Chinese)

    Google Scholar 

  52. Zhou ZW, Hu SC (2002) Characteristics and industrialization prospects of whiskers. Adv Mater Ind 6:71 (in Chinese)

    Google Scholar 

  53. Bi G, Wang HW, Wu RJ (1999) Ceramic whiskers and their applications in composites. Mater Rev 5:56 (in Chinese)

    Google Scholar 

  54. Xu H, Guo MX (1994) The property of SiC whisker. Acta Mater Compos Sinica 1:15 (in Chinese)

    Google Scholar 

  55. Xu CX, Sun XW, Dong ZL, Zhu GP, Cui YP (2006) ZnO hexagram whiskers. Appl Phys Lett 88(9):093101

    Article  Google Scholar 

  56. Zhang ZC, Zhou ZW (2001) Application of ZnO whiskers in functional rubbers. J Funct Mater 32(4):1263 (in Chinese)

    Google Scholar 

  57. Huang JT, Zhang BZ, Zhu JG, Yang B, Xu SJ (1988) Vapor growth TiN whiskers. Chin J Mater Res 2(1):39 (in Chinese)

    Google Scholar 

  58. Zhao JX (2003) Carbon nanofiber and its applications. Hi-tech Fiber & Appl 28(2):7 (in Chinese)

    Google Scholar 

  59. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  Google Scholar 

  60. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162

    Article  Google Scholar 

  61. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666

    Article  Google Scholar 

  62. Meyyappan M (ed) (2004) Carbon nanotubes: science and applications. CRC Press, Boca Raton, FL

    Google Scholar 

  63. Cui C, Li HY (2002) Research actualities of preparing carbon nanotubes. Chem Ind Eng 19(1):59 (in Chinese)

    Google Scholar 

  64. Pan ZW, Xie SS, Chang BH, Wang CY, Lu L, Liu W, Zhou WY, Li WZ, Qian LX (1998) Very long carbon nanotubes. Nature 394:631

    Article  Google Scholar 

  65. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286:1127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengyong Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Chemical Industry Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, C., Chu, Z. (2018). Fiber Reinforcement. In: Yi, XS., Du, S., Zhang, L. (eds) Composite Materials Engineering, Volume 1. Springer, Singapore. https://doi.org/10.1007/978-981-10-5696-3_2

Download citation

Publish with us

Policies and ethics