Skip to main content

Metal Matrix Composites

  • Chapter
  • First Online:
Composite Materials Engineering, Volume 2

Abstract

Metal matrix composites (MMCs) are a class of artificial materials compounded by the introduction of certain content reinforcements, such as fibers, whiskers, or particles, into the metal or alloy matrix materials. MMCs exhibit not only high specific modulus, high specific strength, good thermal conductivity, good electrical conductivity, controllable thermal expansion coefficient, and excellent high-temperature performance, but also designability and machinability. Therefore, they are an important class of advanced materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guan M, Chang Z (2010) Development on preparation process for metal matrix composite. Mater Heat Treat 39(16):93–95 (in Chinese)

    Google Scholar 

  2. Clyne TW, Withers PJ(1993) An introduction to metal matrix composites. Paperback Pub. in 1994 ed. Cambridge University Press, Cambridge

    Google Scholar 

  3. da Costa CE, Lopez FV (2000) Castello JMT. Metal matrix composites. Part 1. Types, properties, applications. Revista De Metalurgia 36(3):179–192

    Article  Google Scholar 

  4. Zhang X-N, Wang H, Hu J-H, Wu Z-F (2006) Review and prospect of the research on metal matrix composites. Yunnan Metallurgy 35(5):53–58 (in Chinese)

    Google Scholar 

  5. Torralba JM, da Costa CE, Velasco F (2003) P/M aluminum matrix composites: an overview. J Mater Process Technol 133(1–2):203–206

    Article  Google Scholar 

  6. Hunt WH (2000) Aluminum metal matrix composites today. Mater Sci Forum 331–3:71–83

    Article  Google Scholar 

  7. Dong T-S, Cui C-X, Liu S-J, Xue H-T (2006) Advancement of fiber-reinforced aluminium matrix composites. Hot work technol 35(6):49–55 (in Chinese)

    Google Scholar 

  8. Zhang H-X, Hu S-B, Tu J-P (2005) Development of Cu based composites reinforced by particles. Mater Sci Technol 13(4):357–364 (in Chinese)

    Google Scholar 

  9. Guang M, Yi W, Yin’e L, Hong W, Jing Z, Zhihuan J, Ting J (2007) Progress in research for Cu/C matrix composites. Rare Met Lett 26(12):6–10 (in Chinese)

    Google Scholar 

  10. Tjong SC, Mai Y-W (2008) Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites. Compos Sci Technol 68:583–601

    Article  Google Scholar 

  11. Godfrey TMT, Goodwin PS, Ward-Close CM (2000) Titanium particulate metal matrix composites—Reinforcement, production methods, and mechanical properties. Adv Eng Mater 2(3):85–92

    Article  Google Scholar 

  12. Leyens C, Hausmann J, Kumpfert J (2003) Continuous fiber reinforced titanium matrix composites: fabrication, properties and applications. Adv Eng Mater 5(6):399–410

    Article  Google Scholar 

  13. Ye HZ, Liu XY (2004) Review of recent studies in magnesium matrix composites. J Mater Sci 39(20):6153–6171

    Article  Google Scholar 

  14. Wu YF, Du WB, Nie ZR, Cao LF, Zuo TY (2007) Research status of particulate reinforced magnesium matrix composites. Rare Met Mater Eng 36(1):184–188 (in Chinese)

    Google Scholar 

  15. Yunsun Z, Shenrong Y (1997) Review and prospects for Zn based composites. Journal of Kunming University of Science and Technology. 22(1):129–134 (in Chinese)

    Google Scholar 

  16. Xiaocong PU, Jinhui LIN, Miao HE (2009) Research progress of high temperature metal-base composite. Hot working technol 38(10):118–121 (in Chinese)

    Google Scholar 

  17. Wo D (2000) Cyclopedia of composites. Chemical industry Publishing House, 469–523 (in Chinese)

    Google Scholar 

  18. Ibrahim IA, Mohamed FA, Lavernia EJ (1991) Particulate reinforced metal matrix composites—A review. J Mater Sci 26:1137–1156

    Article  Google Scholar 

  19. Slipenyuk V, Kuprin Yu, Milman V, Goncharuk J Eckert (2006) Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio. Acta Mater 54:157–166

    Article  Google Scholar 

  20. Geng L, Zhang HW, Li HZ, Guan LN, Huang LJ (2010) Effects of Mg content on microstructure and mechanical properties of SiCp/Al-Mg composites fabricated by semi-solid stirring technique. Trans Nonferrous Met Soc China 20(10):1851–1855

    Article  Google Scholar 

  21. Sahin Y, Acilar M (2003) Production and properties of SiCp-reinforced aluminium alloy composites. Composites 34:709–718

    Article  Google Scholar 

  22. Chawla N, Shen YL (2001) Mechanical behavior of particle reinforced metal matrix composites. Adv Eng Mater 3(6):357–370

    Article  Google Scholar 

  23. Srivatsan TS, Sudarshan TS, Lavernia EJ (1995) Processing of discontinuously-reinforced metal matrix composites by rapid solidification. Prog Mater Sci 39:317–409

    Article  Google Scholar 

  24. Deng KK, Wu K, Wang XJ, Wu YW, Hu XS, Zheng MY, Gan WM, Brokmeier HG (2009) Microstructure evolution and mechanical properties of a particulate reinforced magnesium matrix composite forged at elevated temperatures. Mater Sci Eng A 527(6):1630–1635

    Article  Google Scholar 

  25. Wu K, Deng K, Nie K, Wu Y, Wang X, Hu X, Zheng M (2010) Microstructure and mechanical properties of SiCp/AZ91 composite deformed through a combination of forging and extrusion process. Mater Des 31(8):3929–3932

    Article  Google Scholar 

  26. Yuan H, Tijun C, Ying M (1997) Fabrication technique and mechanical properties of SiCp/ZA27 composites. Tezhong Zhuzao Ji Youse Hejin/Spec Cast Nonferrous Alloys 2:25–28

    Google Scholar 

  27. Bi J, Ma Z, Lv Y, Shen H, Gao M (1992) Study Of Sicw/2124Al composites. China Nonferrous Met 2(2):63–66 (In Chinese)

    Google Scholar 

  28. Wang GS, Zhang J, Geng L, Wang DZ, Yao CK (2001) Microstructure and properties of SiCw/6061Al composites after compression at temperatures around the solidus of the matrix. Mater Sci Technol 17:632–926

    Article  Google Scholar 

  29. Geng L, Wang DZ, Yao CK (1994) Effect of Matrix on Tensile Strength of SiCw/Al Composites. Journal of Harbin Institute of Technology. 1(2):56–60 (In Chinese)

    Google Scholar 

  30. Hong SH, Chung KH (1995) Effects of vacuum hot pressing parameters on the tensile properties and microstructures of SiC-2124 Al composites. Mater Sci Eng A A194:165–170

    Article  Google Scholar 

  31. Zheng M, Wu K, Kamado S, Kojima Y (2002) Microstructure and mechanical properties of aluminum borate whisker reinforced magnesium matrix composites. Mater Lett 57(3):558–564

    Article  Google Scholar 

  32. Zheng M (1999) Interface and fracture behavior of SiCw/AZ91composites. Harbin Institute of Technology Dissertation for the Doctoral Degree in Engineering (in Chinese)

    Google Scholar 

  33. Zheng MY, Wu K, Yao CK (2001) Effect of interfacial reaction on mechanical behavior of SiCw/AZ91 magnesium matrix composites. Mater Sci Eng A 318(1–2):50–56

    Article  Google Scholar 

  34. Evans AG (1991) The mechanical properties of reinforced ceramic, metal and intermetallic matrix composites. Mater Sci Eng A 143(1–2):63–76

    Article  Google Scholar 

  35. Yi B, Feng J, Tao J, Zhang J (1996) Properties of Zn Al/Al2O3 short fiber composite. Aerosp Mater Technol 3:36–40 (in Chinese)

    Google Scholar 

  36. Maruyama Benji (2000) Continuously reinforced MMCs. Compr compos mater 3:717–739

    Article  Google Scholar 

  37. Sebo P, Stefanik P (2003) Copper matrix-carbon fibre composites. Int J Mater Prod Technol 18(1–3):141–159

    Article  Google Scholar 

  38. Ward-Close CM, Minor R, Doorbar PJ (1996) Doorbar. Intermetallic-matrix composites—a review. Intermetallics 4:217–229

    Article  Google Scholar 

  39. Tjong SC, Ma ZY (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R- Reports 29(3–4):49–113

    Article  Google Scholar 

  40. Ni DR, Geng L, Zhang J, Zheng ZZ (2008) Fabrication and tensile properties of in situ TiBw and TiCp hybrid-reinforced titanium matrix composites based on Ti-B4C-C. Mater Sci Eng A. 8 478(1–2):291–296

    Article  Google Scholar 

  41. Zhang XN, Geng L, Wang GS (2003) Microstructure and tensile properties of Al hybrid composites reinforced with SiC whiskers and SiC nanoparticles. Key Eng Mater 249:277–281

    Article  Google Scholar 

  42. Lin G, Zhang X-N, Zheng Z-Z, Bin X (2006) Effect of aging treatment on the mechanical properties of (SiCw + SiCp)/2024Al hybrid nanocomposites. Trans Nonferrous Met Soc China 16:387–391

    Article  Google Scholar 

  43. XU J-H, XU Z-F, Yu H (2010) Progress in research on fabrication of continuous Fiber reinforced aluminum matrix composites. Foundry Technol 31(12):670–1667 (in Chinese)

    Google Scholar 

  44. Li Y, Xu Y (2007) Development of preparation of SiC fibers reinforced composites. Mater Rev 21:434–437 (in Chinese)

    Google Scholar 

  45. da Costa CE, Lopez FV, Castello JMT (2000) Metal matrix composites. Part 2. Processing and consolidation techniques for particle reinforced MMCs. Revista De Metalurgia. 36(3):193–197

    Article  Google Scholar 

  46. Badini C, Fino P, Musso M, Dinardo P (2000) Thermal fatigue behaviour of a 2014/Al2O3-SiO2 composite processed by squeeze casting. Mater Chem Phys 64:247–255

    Article  Google Scholar 

  47. Hashim J, Looney L, Hashmi MSJ (2002) Particle distribution in cast metal matrix composites—Part I. J Mater Process Technol 123:251–257

    Article  Google Scholar 

  48. Qu SJ, Geng L, Han JC (2007) SiCp/Al composites fabricated by modified squeeze casting technique. J Mater Sci Technol 23(5):641–644

    Google Scholar 

  49. Huang LJ, Geng L, Xu HY, Peng HX (2011) In situ TiC particles reinforced Ti6Al4 V matrix composite with a network reinforcement architecture. Mater Sci Eng A 528(6):2859–2862

    Article  Google Scholar 

  50. Feng YC, Geng L, Li AB, Zheng ZZ (2010) Fabrication and characteristics of in situ Al12 W particles reinforced aluminum matrix composites by reaction sintering. Mater Des 31(2):965–967

    Article  Google Scholar 

  51. Zhang S, Zhang E (1996) Development of metal matrix composites formed by spray codeposition. Aerosp Mater Technol 4:1–7

    Google Scholar 

  52. Yanqiang L, Jianzhong F, Jimei S, Likai S (2010) Development of metal matrix composites by powder-metallurgy processing. Mater Rev 24(12):18–23

    Google Scholar 

  53. Gupta M et al (1997) Effect of particulate type on the microstructure and heat treatment response of Al-Cu based metal-matrix composites. J Mater Proc Tec 65(1–3):245–251

    Article  Google Scholar 

  54. Geng L, Xu HY, Yu K, Wang HL (2007) Aging behavior of Al2O3 short fiber reinforced Al-Cu alloy composites. Trans Nonferrous Met Soc China 17(5):1018–1021

    Article  Google Scholar 

  55. Geng L, Feng YC, Zheng ZZ, Zhang J, Wang QW (2009) Effects of heat-treatment on microstructures and mechanical properties of WO3 particle and Al18B4O33 whisker hybrid reinforced Al matrix composites by squeeze casting. Mater Sci Eng A 506(1–2):34–38

    Article  Google Scholar 

  56. Zheng MY, Wu K, Kamado S, Kojima Y (2003) Aging behavior of squeeze cast SiCw/AZ91 magnesium matrix composite. Mater Sci Eng A 348:67–75

    Article  Google Scholar 

  57. Gu M, Wu Z, Jin Y, Kocak M (1999) Effects of reinforcements on the aging response of a ZK60-based hybrid composite. Mater Sci Eng A 272:257–263

    Article  Google Scholar 

  58. Wu K (1995) Interface structure and aging behavior of SiCw/AZ91 composites. Harbin Institute of Technology Dissertation for the Doctoral Degree in Engineering (in Chinese)

    Google Scholar 

  59. Ni D-R, Jin X-O, Geng L, Wang G-S (2007) Research on heat treatment of discontinuously reinforced titanium matrix composites. Mater Sci Technol 1 15 (1 2):173–176

    Google Scholar 

  60. Ranganath S (1997) A review on particulate-reinforced titanium matrix composites. J mater sci 32(1):1–16

    Google Scholar 

  61. Zhang XX, Deng CF, Wang DZ, Geng L (2005) Synthesis and thermal stability of multiwall carbon nanotubes reinforced aluminum metal matrix composites. Trans Nonferrous Met Soc China 15:240–244

    Google Scholar 

  62. Wu J, Li W, Xie Y (2011) Mechanical and experimental analyses of microyield behavior of metal matrix composites. J Mater Sci Eng 4 29(4):536–540

    Google Scholar 

  63. Li AB, Geng L, Zhang J, Zheng ZZ, Yao CK (2004) The effect of whisker misalignment on the\hot compressive deformation behavior of a SiCw/6061Al Composite at 500 °C. Mater Chem Phys 84:29–32

    Article  Google Scholar 

  64. Feng AH, Geng L, Zhang J, Yao CK (2003) Hot compressive deformation behavior of a eutectic Al-Si alloy based composite reinforced with a-Si3N4 whisker. Mater Chem Phys 82(3):618–621

    Article  Google Scholar 

  65. Qu SJ, Geng L, Meng QC (2005) Effects of hot rolling on microstructure and properties of a 20 vol. % SiCp/Al composite. Rare Met 24(1):95–99

    Google Scholar 

  66. Geng L, Guan LN (2009) Effect of hot extrusion on microstructure and properties of (ABOw + SiCp)/ 6061Al composites fabricated by semi-solid stirring technique. J Wuhan Univ Technol 24:13–16

    Google Scholar 

  67. Geng L, Qu SJ, Lei TQ (2003) Hot extrusion and its effect on microstructure and properties of squeeze casting SiCp/Al composites with lower volume fraction of reinforcement. Key Eng Mater 249:233–238

    Article  Google Scholar 

  68. Ma ZY, Tjong SC (2001) Creep deformation characteristics of discontinuously reinforced aluminium- matrix composites. Compos Sci Technol 61(5):771–786

    Article  Google Scholar 

  69. Tian J, Li W, Han L, Peng J (2010) Research and development of creep of metal matrix composites. Mater Rev 24(3):119–123 (In Chinese)

    Google Scholar 

  70. Tochigi I, Imai T, Geng L (2000) High strain rate superplasticity of a Beta-Si3N4 whisker reinforced pure aluminum composite. Key Eng Mater 171–1:369–375

    Article  Google Scholar 

  71. Geng L, Imai T, Mao JF, Takagi M, Yao CK (2001) Microstructure and high strain rate superplasticity of an in situ composite synthesized from Al and nano ZrO2 particles by powder metallurgy. Mater Science Technol 17(2):187–194

    Article  Google Scholar 

  72. Geng L, Wang GS, Meng QC, Wang DZ, YAO ZK, LEI TQ (2001). Investigation of coordination mechanism in superplastic deformation of SiCw/LD2AL composite. Mater Sci Technol 9(3):225–228

    Google Scholar 

  73. Hu H-E, Zhen L, Lei T-Q, Imai T (2003) High-strain-rate superplasticity of metal matrix composites. Mater Science Techno 11(4):406–409

    Google Scholar 

  74. Geng L, Yuan Z, Yao Z (1993) Turning of discontinuously reinforced metal matrix composites. Aerosp Mater Technol 2:13–16

    Google Scholar 

  75. Geng L, Yuan Z, Y Hui, Yao Z (1994) Effects of whisker orientation on the quality of cutting surface of the SiCw/Al composite. J Mater Eng 2:6–8

    Google Scholar 

  76. Shue B, Moreira A, Flowers G (2010) Review of recent developments in composite material for aerospace applications. Proceeding of the ASME Iternational Design Engineering Technical Conferences and Computers and Computers and Information in Engineering Conference 1:811–819

    Google Scholar 

  77. Miracle DB (2005) Metal matrix composites—From science to technological significance. Compos Sci Technol 65(15–16):2526–2540

    Article  Google Scholar 

  78. Wang YX, Yu Z, Yan PF, Yan B (2010) Development of aluminum matrix composites. Shanghai Nonferrous Met 31(4):194–198 (in Chinese)

    Google Scholar 

  79. Zhang X, Wang D, Yao Z (2002) Commercialization of discontinuously reinforced metal-matrix composites. Aeronaut Manufact Technol 5:35–38

    Google Scholar 

  80. Wu R (1997) The present condition and prospects on metal matrix composites. Acta Metall Sin 33(1):78–84

    Google Scholar 

  81. Zhang DI, Zhang G, Li Z (2010) The current state and trend of metal matrix composites. Mater China 129(14):1–6 (in Chinese)

    Google Scholar 

  82. Hao B, Duan X, Cui H, Yang B, Zhang J (2005) Present status and expectation of metal matrix composites. Mater Rev 19(7):64–68 (in Chinese)

    Google Scholar 

  83. Harris B (1991) A perspective view of composite materials development. Mater Des 12(5):259–272

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Geng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd and Chemical Industry Press, Beijing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geng, L., Wu, K. (2018). Metal Matrix Composites. In: Yi, XS., Du, S., Zhang, L. (eds) Composite Materials Engineering, Volume 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-5690-1_3

Download citation

Publish with us

Policies and ethics