Skip to main content

A Survey of Ulrich Bundles

  • Chapter
Analytic and Algebraic Geometry

Abstract

The purpose of this article is to serve as an introduction to Ulrich bundles for interested readers. We discuss the origins of the study of Ulrich bundles, their elementary properties, and we give an exposition of the known results in their classification on various kinds of smooth projective varieties. As an illustration of a method recently used by Marta Casanellas and Robin Hartshorne for the classification of Ulrich bundles on a cubic surface, we classify the stable Ulrich bundles on a smooth quartic surface in ℙ3 of Picard number 2 by first Chern class.

The author was supported by TÜBİTAK scholarship 2232. He would also like to thank the Tata Institute of Fundamental Research and the Institut des Hautes Études Scientifiques, where he conducted research on Ulrich bundles on K3 surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 103.20
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • [1] Marian Aprodu, Gavril Farkas, and Angela Ortega, Minimal resolutions, Chow forms and Ulrich bundles on K3 surfaces (2012), available at arXiv:1212.6248v4.

  • [2] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452. MR0131423 (24 #A1274)

    Google Scholar 

  • [3] Jörgen Backelin and Jürgen Herzog, On Ulrich-modules over hypersurface rings, Commutative algebra (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 63–68, DOI 10.1007/978-1-4612-3660-3_4, (to appear in print). MR1015513 (90i:13006)

  • [4] Arnaud Beauville, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39–64, DOI 10.1307/mmj/1030132707. Dedicated to William Fulton on the occasion of his 60th birthday. MR1786479 (2002b:14060)

  • [5] Joseph P. Brennan, Jürgen Herzog, and Bernd Ulrich, Maximally generated Cohen-Macaulay modules, Math. Scand. 61 (1987), no. 2, 181–203. MR947472 (89j:13027)

    Google Scholar 

  • [6] Marta Casanellas, Robin Hartshorne, Florian Geiss, and Frank-Olaf Schreyer, Stable Ulrich bundles, Internat. J. Math. 23 (2012), no. 8, 1250083, 50, DOI 10.1142/S0129167X12500838. MR2949221

  • [7] Gianfranco Casnati, Daniele Faenzi, and Francesco Malaspina, Moduli spaces of rank two aCM bundles on the Segre product of three projective lines (2014), available at arXiv:1404.1188v3.

  • [8] Gianfranco Casnati, Daniele Faenzi, and Francesco, Rank two aCM bundles on the del Pezzo threefold with Picard number 3, J. Algebra 429 (2015), 413–446, DOI 10.1016/j.jalgebra.2015.02.008. MR3320630

  • [9] Gianfranco Casnati, Rank two aCM bundles on the del Pezzo fourfold of degree 6 and its general hyperplane section (2015), available at arXiv:1503.02796v1.

  • [10] Luca Chiantini and Carlo Madonna, ACM bundles on a general quintic threefold, Matematiche (Catania) 55 (2000), no. 2, 239–258 (2002). Dedicated to Silvio Greco on the occasion of his 60th birthday (Catania, 2001). MR1984199 (2004f:14055)

    Google Scholar 

  • [11] Emre Coskun, The fine moduli spaces of representations of Clifford algebras, Int. Math. Res. Not. IMRN 15 (2011), 3524–3559, DOI 10.1093/imrn/rnq221. MR2822181 (2012j:14017)

  • [12] Emre Coskun, Rajesh S. Kulkarni, and Yusuf Mustopa, On representations of Clifford algebras of ternary cubic forms, New trends in noncommutative algebra, Contemp. Math., vol. 562, Amer. Math. Soc., Providence, RI, 2012, pp. 91–99, DOI 10.1090/conm/562/11132, (to appear in print). MR2905555

  • [13] Emre Coskun, Pfaffian quartic surfaces and representations of Clifford algebras, Doc. Math. 17 (2012), 1003–1028. MR3007683

    Google Scholar 

  • [14] Emre Cosku, The geometry of Ulrich bundles on del Pezzo surfaces, J. Algebra 375 (2013), 280–301, DOI 10.1016/j.jalgebra.2012.08.032. MR2998957

  • [15] Emre Coskun, Ulrich bundles on quartic surfaces with Picard number 1, C. R. Math. Acad. Sci. Paris 351 (2013), no. 5-6, 221–224, DOI 10.1016/j.crma.2013.04.005 (English, with English and French summaries). MR3089682

  • [16] Laura Costa, Rosa M. Miró-Roig, and Joan Pons-Llopis, The representation type of Segre varieties, Adv. Math. 230 (2012), no. 4-6, 1995–2013, DOI 10.1016/j.aim.2012.03.034. MR2927362

  • [17] L. Costa and R. M. Miró-Roig, GL(V)-invariant Ulrich bundles on Grassmannians, Math. Ann. 361 (2015), no. 1-2, 443–457, DOI 10.1007/s00208-014-1076-9. MR3302625

  • [18] L. Costa, Homogeneous Ulrich bundles on flag manifolds (2015), available at arXiv:1506.03586v1.

  • [19] Igor V. Dolgachev, Luigi Cremona and cubic surfaces, Luigi Cremona (1830–1903) (Italian), Incontr. Studio, vol. 36, Istituto Lombardo di Scienze e Lettere, Milan, 2005, pp. 55–70 (English, with Italian summary). MR2305952 (2008a:14002)

    Google Scholar 

  • [20] Daniele Faenzi, Rank 2 arithmetically Cohen-Macaulay bundles on a nonsingular cubic surface, J. Algebra 319 (2008), no. 1, 143–186, DOI 10.1016/j.jalgebra.2007.10.005. MR2378065 (2009e:14065)

  • [21] Daniele Faenzi and Francesco Malaspina, Surfaces of minimal degree of tame and wild representation type (2014), available at arXiv:1409.4892v2.

  • [22] Gavril Farkas, Mircea Mustaţă, and Mihnea Popa, Divisors on \( {\mathcal{M}}_{g,g + 1} \) and the minimal resolution conjecture for points on canonical curves, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 4, 553–581, DOI 10.1016/S0012-9593(03)00022-3 (English, with English and French summaries). MR2013926 (2005b:14051)

  • [23] H. Grassmann, Die stereometrischen Gleichungen dritten Grades, und die dadurch erzeugten Oberflächen, J. Reine Angew. Math. 49 (1855), 47–65, DOI 10.1515/crll.1855.49.47 (German). MR1578905

  • [24] Phillip Griffiths and Joe Harris, On the Noether-Lefschetz theorem and some remarks on codimension-two cycles, Math. Ann. 271 (1985), no. 1, 31–51, DOI 10.1007/BF01455794. MR779603 (87a:14030)

  • [25] A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphére de Riemann, Amer. J. Math. 79 (1957), 121–138 (French). MR0087176 (19,315b)

    Google Scholar 

  • [26] Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théoremès de Lefschetz locaux et globaux (SGA 2), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 4, Société Mathématique de France, Paris, 2005 (French). Séminaire de Géométrie Algébrique du Bois Marie, 1962; Augmenté d’un exposé de Michèle Raynaud. [With an exposé by Michèle Raynaud]; With a preface and edited by Yves Laszlo; Revised reprint of the 1968 French original. MR2171939 (2006f:14004)

    Google Scholar 

  • [27] Darrell E. Haile, On the Clifford algebra of a binary cubic form, Amer. J. Math. 106 (1984), no. 6, 1269–1280, DOI 10.2307/2374394. MR765580 (86c:11028)

  • [28] Darrell Haile and Steven Tesser, On Azumaya algebras arising from Clifford algebras, J. Algebra 116 (1988), no. 2, 372–384, DOI 10.1016/0021-8693(88)90224-4. MR953158 (89j:15044)

  • [29] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR0463157 (57 #3116)

    Google Scholar 

  • [30] Jürgen Herzog and Michael Kühl, Maximal Cohen-Macaulay modules over Gorenstein rings and Bourbaki-sequences, Commutative algebra and combinatorics (Kyoto, 1985), Adv. Stud. Pure Math., vol. 11, North-Holland, Amsterdam, 1987, pp. 65–92. MR951197 (89h:13029)

    Google Scholar 

  • [31] Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010. MR2665168 (2011e:14017)

    Google Scholar 

  • [32] Yeongrak Kim, Ulrich bundles on rational surfaces with an anticanonical pencil (2014), available at arXiv:1406.4359v2.

  • [33] Andreas Leopold Knutsen, Smooth curves on projective K3 surfaces, Math. Scand. 90 (2002), no. 2, 215–231. MR1895612 (2003c:14041)

    Google Scholar 

  • [34] Rajesh S. Kulkarni, On the Clifford algebra of a binary form, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3181–3208, DOI 10.1090/S0002-9947-03-03293-8. MR1974681 (2004c:16025)

  • [35] Martí Lahoz, Emanuele Macrì, and Paolo Stellari, Arithmetically Cohen-Macaulay bundles on cubic threefolds, Algebraic Geometry 2 (2015), no. 2, 231–269, DOI 10.14231/AG-2015-011.

  • [36] Anna Lorenzini, The minimal resolution conjecture, J. Algebra 156 (1993), no. 1, 5–35, DOI 10.1006/jabr.1993.1060. MR1213782 (94g:13005)

  • [37] Rosa M. Miró-Roig, The representation type of rational normal scrolls, Rend. Circ. Mat. Palermo (2) 62 (2013), no. 1, 153–164, DOI 10.1007/s12215-013-0113-y. MR3031575

  • [38] Rosa M. Miró-Roig and Joan Pons-Llopis, n-dimensional Fano varieties of wild representation type, J. Pure Appl. Algebra 218 (2014), no. 10, 1867–1884, DOI 10.1016/j.jpaa.2014.02.011. MR3195414

  • [39] Shigeru Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math. 77 (1984), no. 1, 101–116, DOI 10.1007/BF01389137. MR751133 (85j:14016)

  • [40] Joan Pons-Llopis and Fabio Tonini, ACM bundles on del Pezzo surfaces, Matematiche (Catania) 64 (2009), no. 2, 177–211. MR2800010 (2012f:14070)

    Google Scholar 

  • [41] B. Saint-Donat, Projective models of K –3 surfaces, Amer. J. Math. 96 (1974), 602–639. MR0364263 (51 #518)

    Google Scholar 

  • [42] Bernd Ulrich, Gorenstein rings and modules with high numbers of generators, Math. Z. 188 (1984), no. 1, 23–32, DOI 10.1007/BF01163869. MR767359 (85m:13021)

  • [43] M. Van den Bergh, Linearisations of binary and ternary forms, J. Algebra 109 (1987), no. 1, 172–183, DOI 10.1016/0021-8693(87)90171-2. MR898344 (88j:11020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Coskun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd. and Hindustan Book Agency

About this chapter

Cite this chapter

Coskun, E. (2017). A Survey of Ulrich Bundles. In: Aryasomayajula, A., Biswas, I., Morye, A.S., Parameswaran, A.J. (eds) Analytic and Algebraic Geometry. Springer, Singapore. https://doi.org/10.1007/978-981-10-5648-2_6

Download citation

Publish with us

Policies and ethics