Skip to main content

Design and Fabrication of Nanomaterial-Based Device for Pressure Sensorial Applications

  • Chapter
  • First Online:
Advanced Nanomaterials in Biomedical, Sensor and Energy Applications

Abstract

In the last few decades, pressure sensing devices with actual electronic applications become extremely popular with considering sensitive response potential of a sensor material. However, wearable pressure sensing technologies with flexible and stretchable features are continuously facing various challenges; researchers should consider this field more seriously. The nanomaterials with multifunctional great features in pressure sensing applications are now being considered tremendously. In this chapter, we have approached the basic principle behind a pressure sensor material from chemical aspect. Secondly, various features of different nanomaterials, viz. metal nanowires, carbon nanotubes, quantum dots, etc., have been taken into consideration with their potential applicability as a pressure sensing device. This chapter can create a brief focus to a nanomaterial science researcher towards the suitability of their materials as pressure sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  2. P. Avouris, Supertubes. IEEE Spectr. 41(8), 40–45 (2004)

    Article  Google Scholar 

  3. J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, Phys. Rev. Lett. 82, 944–947 (1999)

    Article  CAS  Google Scholar 

  4. X. Li, R. Zhang, W. Yu, K. Wang, J. Wei, D. Wu, A. Cao, Z. Li, Y. Cheng, Q. Zheng, et al., Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep., 1–6 (2012)

    Google Scholar 

  5. M. Hempel, D. Nezich, J. Kong, M. Hofmann, A novel class of strain gauges based on layered Percolative films of 2D materials. Nano Lett. 12, 5714–5571 (2012)

    Article  CAS  Google Scholar 

  6. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata, A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296–301 (2011)

    Article  CAS  Google Scholar 

  7. D. Lee, H.P. Hong, M.J. Lee, C.W. Park, A prototype high sensitivity load cell using single walled carbon nanotube strain gauges. Sens. Actuators A 180, 120–126 (2012)

    Article  CAS  Google Scholar 

  8. C.X. Liu, J.W. Choi, P.D.M.S. An Embedded, Nanocomposite strain sensor toward biomedical application. 31st. Ann. Int. Conf. IEEE EMBS, 6391–6394 (2009)

    Google Scholar 

  9. T. Giorgino, P. Tormene, F. Lorussi, D.D. Rossi, S. Quaglini, Sensor evaluation for wearable strain gauges in neurological rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng., 409–415 (2009)

    Google Scholar 

  10. F. Lourussi, E.M. Scilingo, M. Tesconi, A. Tognetti, D.D. Rossi, Strain sensing fabric for hand posture and gesture monitoring. IEEE Trans. Inf. Technol. Biomed., 372–381 (2005)

    Google Scholar 

  11. I. Kang, M.J. Schulz, J.H. Kim, V. Shanov, D. Shi, A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 15, 737–748 (2006)

    Article  CAS  Google Scholar 

  12. J. Zhang, J. Liu, R. Zhuang, E. Mäder, G. Heinrich, S. Gao, Single MWNT-glass fiber as strain sensor and switch. Adv. Mater. 23, 3392–3397 (2011)

    Article  CAS  Google Scholar 

  13. C.X. Liu, J.W. Choi, Patterning conductive PDMS Nanocomposite in an elastomer using microcontact printing. J. Micromech. Microeng. 19, 085019 (2009)

    Article  Google Scholar 

  14. N. Lu, C. Lu, S. Yang, J. Rogers, Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 22, 4044–4050 (2012)

    Article  CAS  Google Scholar 

  15. X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, T. Cai, Y. Rong, H. Han, J. Zhou, Z.L. Wang, High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 23, 5440–5444 (2011)

    Article  CAS  Google Scholar 

  16. X. Yang, Z.Y. Zhou, F.Z. Zheng, M. Zhang, J. Zhang, Y.G. Yao, A high sensitivity single-walled carbon-nanotube- array based strain sensor for weighing transducers. International conference on solid-state sensors, actuators and microsystems, Denver, June 21–25, 2009

    Google Scholar 

  17. G. Schwartz, B.C. Tee, J. Mei, A.L. Appleton, H. Kim do, H. Wang, Z. Bao, Nat. Commun. 4, 1859 (2013)

    Article  Google Scholar 

  18. T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, Nat. Mater. 9, 1015 (2010)

    Article  CAS  Google Scholar 

  19. S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. Cheng, Nat. Commun. 5, 3132 (2014)

    Google Scholar 

  20. X. Wang, Y. Gu, Z. Xiong, Z. Cui, T. Zhang, A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Adv. Mater. 26, 1336 (2014)

    Article  CAS  Google Scholar 

  21. G.A. Salvatore, N. Munzenrieder, T. Kinkeldei, L. Petti, C. Zysset, I. Strebel, L. Buthe, G. Troster, Nat. Commun. 5, 2982 (2014)

    Article  Google Scholar 

  22. C. Li, P.-M. Wu, L.A. Shutter, R.K. Narayan, Appl. Phys. Lett. 96, 053502 (2010)

    Article  Google Scholar 

  23. M.C. Yu, M.S. Yu, M.K. Yu, F. Lee, W.H. Huang, Pediatr. Nephrol. 26, 233 (2011)

    Article  Google Scholar 

  24. C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu, Y. Kim, Y. Huang, A.R. Damadoran, J. Xia, L.W. Martin, Y. Huang, J.A. Rogers, Nat. Commun. 5, 4496 (2014)

    Article  CAS  Google Scholar 

  25. C.L. Choong, M.B. Shim, B.S. Lee, S. Jeon, D.S. Ko, T.H. Kang, J. Bae, S.H. Lee, K.E. Byun, J. Im, Y.J. Jeong, C.E. Park, J.J. Park, U.I. Chung, Adv. Mater. 26, 3451 (2014)

    Article  CAS  Google Scholar 

  26. S.C.B. Mannsfeld, B.C.-K. Tee, R.M. Stoltenberg, C.V.H.-H. Chen, S. Barman, B.V.O. Muir, A.N. Sokolov, C. Reese, Z. Bao, Nat. Mater. 9, 859 (2010)

    Article  CAS  Google Scholar 

  27. L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, Z. Bao, Nat. Commun. 5, 3002 (2014)

    Google Scholar 

  28. I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, S. Bauer, S.P. Lacour, S. Wagner, Appl. Phys. Lett. 89, 073501 (2006)

    Article  Google Scholar 

  29. I. Muller, R. de Brito, C.E. Pereira, V. Brusamarello, Load cells in force sensing analysis—Theory and a novel application. IEEE Instrum. Meas. Mag. 13(1), 15–19 (2010)

    Article  Google Scholar 

  30. E.D. Orth, Semiconductor strain gage pressure transducer, Google Patents (1972)

    Google Scholar 

  31. Tekscan, FlexiForce Force Sensors, September 2014. http://www.tekscan.com/interface-pressure-measurementoptions

  32. M.H. Lee, H.R. Nicholls, Review article tactile sensing for mechatronics—A state of the art survey. Mechatronics 9(1), 1–31 (1999)

    Article  Google Scholar 

  33. P.S. Girão, P.M.P. Ramos, O. Postolache, J.M.D. Pereira, Tactile sensors for robotic applications. Measurement 46(3), 1257–1271 (2013)

    Article  Google Scholar 

  34. A.V. Shirinov, W.K. Schomburg, Sens. Actuators A 142, 48 (2008)

    Article  CAS  Google Scholar 

  35. O. Akar, T. Akin, K. Naja, Sens. Actuators A 95, 29 (2001)

    Article  CAS  Google Scholar 

  36. K.I. Park, J.H. Son, G.T. Hwang, C.K. Jeong, J. Ryu, M. Koo, I. Choi, S.H. Lee, M. Byun, Z.L. Wang, K.J. Lee, Adv. Mater. 26, 2514 (2014)

    Article  CAS  Google Scholar 

  37. S. Wagner, S. Bauer, MRS Bull. 37, 207 (2012)

    Article  Google Scholar 

  38. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, Nature 499, 458 (2013)

    Article  CAS  Google Scholar 

  39. J.T. Muth, D.M. Vogt, R.L. Truby, Y. Menguc, D.B. Kolesky, R.J. Wood, J.A. Lewis, Adv. Mater. 26, 6307 (2014)

    Article  CAS  Google Scholar 

  40. J.R. Wood, H.D. Wagner, Single-wall carbon nanotubes as molecular pressure sensors. Appl. Phys. Lett. 76(30), 2883–2885 (2000)

    Article  CAS  Google Scholar 

  41. C.K.M. Fung, M.Q.H. Zhang, R.H.M. Chan, W.J. Li, A PMMA-based micro pressure sensor chip using carbon nanotubes as sensing elements, in Proceeding of the 18th IEEE Conference Micro Electro Mechanical Systems, 2005, pp. 251–254

    Google Scholar 

  42. X. Lu, M.S. Yavuz, H.-Y. Tuan, B.A. Korgel, Y. Xia, Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc. 130, 8900–8901 (2008)

    Article  CAS  Google Scholar 

  43. Z. Huo, C.-k. Tsung, W. Huang, X. Zhang, P. Yang, Sub-two nanometer single crystal au nanowires. Nano Lett. 8, 2041–2044 (2008)

    Article  CAS  Google Scholar 

  44. H. Feng et al., Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering. Chem. Commun., 1984–1986 (2009)

    Google Scholar 

  45. Y. Chen, Z. Ouyang, M. Gu, W. Cheng, Mechanically strong, optically transparent, giant metal superlattice nanomembranes from ultrathin gold nanowires. Adv. Mater. 25, 80–85 (2013)

    Article  CAS  Google Scholar 

  46. A. Sánchez-Iglesias et al., Highly transparent and conductive films of densely aligned ultrathin au nanowires monolayers. Nano Lett. 12, 6066–6070 (2012)

    Article  Google Scholar 

  47. J. Krantz, T. Stubhan, M. Richter, S. Spallek, I. Litzoy, G.J. Matt, E. Spiecker, C.J. Brabec, Spray-coated silver nano-wires as top electrode layer in semitransparent P3HT:PCMB-based organic solar cell devices. Adv. Funct. Mater. 23, 1711–1717 (2013)

    Article  CAS  Google Scholar 

  48. L. Yang, T. Zhang, H. Zhou, S.C. Price, B.J. Wiley, W. You, Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces 3, 4075–4084 (2011)

    Article  CAS  Google Scholar 

  49. D.S. Leem, A. Edwards, M. Faist, J. Nelson, D.D.C. Bradley, J.C.D. Mello, Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv. Mater. 23, 4371–4375 (2011)

    Article  CAS  Google Scholar 

  50. S. Wang, X. Zhang, W. Zhao, Flexible and conductive film based on random networks of Ag nanowires, J. Nanomater, no. 456098 (2013).

    Google Scholar 

  51. C. Celle, C. Mayousse, E. Moreau, H. Basti, A. Carella, J.P. Simonato, Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res. 5, 427–433 (2012)

    Article  CAS  Google Scholar 

  52. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire – Elastomer nanocomposite. ACS Nano 8, 5154–5163 (2014)

    Article  CAS  Google Scholar 

  53. Q. Fan, Z. Qin, S. Gao, Y. Wu, J. Pionteck, E. Mader, M. Zhu, The use of a carbon nanotube layer on a polyurethane multifilament substrate for monitoring strains as large as 400%. Carbon 50, 4085–4092 (2012)

    Article  CAS  Google Scholar 

  54. S. Luo, T. Liu, Structure-property-processing relationships of single-wall carbon nanotube thin film Piezo-resistive sensors. Carbon 59, 315–324 (2013)

    Article  CAS  Google Scholar 

  55. X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, J. Am. Chem. Soc. 126, 12736 (2004)

    Article  CAS  Google Scholar 

  56. J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686–3699 (2012)

    Article  CAS  Google Scholar 

  57. S. Zhu, S. Tang, J. Zhang, B. Yang, Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem. Commun. 48, 4527–4539 (2012)

    Article  CAS  Google Scholar 

  58. Z.P. Zhang, J. Zhang, N. Chen, L.T. Qu, Tailored graphene systems for unconventional applications in energy conversion and storage devices, energy. Environ. Sci. 5, 8869–8890 (2012)

    CAS  Google Scholar 

  59. L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.-J. Zhu, Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale 5, 4015–4039 (2013)

    Article  CAS  Google Scholar 

  60. N. Mohanty, D. Moore, Z. Xu, T.S. Sreeprasad, A. Nagaraja, A.A. Rodriguez, V. Berry, Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size. Nat. Commun. 3, 844 (2012)

    Article  Google Scholar 

  61. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451–10453 (2005)

    Article  CAS  Google Scholar 

  62. J.S. Bunch, Y. Yaish, M. Brink, K. Bolotin, P.L. McEuen, Coulomb oscillations and hall effect in quasi-2D graphite quantum dots. Nano Lett. 5, 287–290 (2005)

    Article  CAS  Google Scholar 

  63. F. Libisch, C. Stampfer, J. Burgdorfer, Graphene quantum dots: Beyond a Dirac billiard. Phys. Rev. B 79, 115423 (2009)

    Article  Google Scholar 

  64. K.A. Ritter, J.W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235−242 (2009)

    Article  Google Scholar 

  65. T.S. Sreeprasad, V. Berry, How do the electrical properties of graphene change with its functionalization. Small 9, 341–350 (2012)

    Google Scholar 

  66. T.S. Sreeprasad, A.A. Rodriguez, J. Colston, A. Graham, E. Shishkin, V. Pallem, V. Berry, Electron-tunneling modulation in percolating network of graphene quantum dots: Fabrication, phenomenological understanding, and humidity/pressure sensing applications. Nano Lett. 13, 1757–1763 (2013)

    Article  CAS  Google Scholar 

  67. E. Massera, V. La Ferrara, M. Miglietta, T. Polichetti, I. Nasti, G. Di Francia, Gas sensors based on graphene. Chem. Today 29, 39–41 (2011)

    CAS  Google Scholar 

  68. Y.S. Chen, G.W. Hsieh, S.P. Chen, P.Y. Tseng, C.W. Wang, Zinc oxide nanowire-poly(methyl methacrylate) dielectric layers for polymer capacitive pressure sensors. ACS Appl. Mater. Interf. 7, 45−50 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayeeta Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Srivastava, R., Chattopadhyay, J. (2017). Design and Fabrication of Nanomaterial-Based Device for Pressure Sensorial Applications. In: Chattopadhyay, J., Srivastava, R. (eds) Advanced Nanomaterials in Biomedical, Sensor and Energy Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-5346-7_1

Download citation

Publish with us

Policies and ethics