Skip to main content

Natural Convection of a Micropolar Fluid Between Two Vertical Walls with Newtonian Heating/Cooling and Heat Source/Sink

  • Conference paper
  • First Online:
Applications of Fluid Dynamics

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

The aim of this paper is to investigate the natural convection of a micropolar fluid flow in two vertical walls with the Newtonian heating/cooling on one of its walls. The governing linear differential equations with their appropriate boundary conditions of the considered model are changed first into non-dimensional differential equations and boundary conditions by using the dimensionless parameters and variables. Analytic solutions of the non-dimensional differential equations have been obtained one by one for several cases of source or sink parameter. To obtain the influence of the Biot number and other physical parameters, the numerical results of the velocity, temperature, and microrotational velocity are finally shown in the graphs and table. It is found that the effect of the Newtonian heating is to increase the velocity, microrotational velocity, and rate of volume flow, while in the case of the Newtonian cooling, velocity, microrotational velocity, and rate of volume flow have decreasing tendency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

S :

Dimensionless source/sink parameter

T :

Dimensionless temperature

K :

Vertex viscosity

w :

Angular viscosity

y :

Dimensionless transverse coordinate

y′:

Transverse coordinate

u :

Dimensionless streamwise velocity

u′:

Streamwise velocity

T′:

Temperature

R :

Vertex viscosity parameter

Q :

Dimensionless volume flow rate

L :

Channel width

E :

Dimensionless total heat rate added to the fluid

G :

Gravitational acceleration

Gr :

Grashof number

w :

Dimensionless microrotational velocity

j :

Microinertia density

Bi :

Biot number

\(\rho\) :

Density

β :

Coefficient of thermal expansion

γ :

Spin gradient viscosity

μ :

Dynamic viscosity

f :

Fluid layer

p :

Porous layer

c :

Cold wall

References

  • Aung W (1972) Fully developed laminar free convection between vertical plates heated asymmetrically. Int J Heat Mass Transf 15:1577–1580

    Article  MATH  Google Scholar 

  • Erigen AC (1966) Theory of micropolar fluids. J Math Mech 16:1–18

    MathSciNet  Google Scholar 

  • Erigen AC (1972) Theory of thermo-micropolar fluids. J Math Anal Appl 38:480–496

    Article  Google Scholar 

  • Kumar D, Singh AK (2015) Effects of induced magnetic field on natural convection with Newtonian heating/cooling in vertical annuli. Procedia Eng 127:568–574

    Google Scholar 

  • Merkin JH (1994) Natural-convection boundary-layer flow on a vertical surface with Newtonian heating. Int J Heat Fluid Flow 15:392–398

    Article  Google Scholar 

  • Miyatake O, Fujii T (1973) Natural convection heat transfer between vertical parallel plates at unequal uniform temperatures. Heat Transf Jpn Res 2:79–88

    Google Scholar 

  • Nelson DJ, Wood BD (1973) Combined heat and mass transfer natural convection between vertical parallel plates. Int J Heat Mass Transf 32:1779–1787

    Article  Google Scholar 

  • Ravi SK, Singh AK, Alawadhi KA (2011) Effects of temperature dependent heat source/sink on free convective flow of a micropolar fluid between two vertical walls. Inter J Energy Technol 3(27):1–8

    Google Scholar 

Download references

Acknowledgements

Mr. Arun Kumar Singh is thankful for UGC, New Delhi, India, for the economical endorsement in the form of a Junior Research Fellowship to finish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Singh .

Editor information

Editors and Affiliations

Appendix

Appendix

$$\begin{aligned} & k_{1} = \cos \sqrt s ,\;\;k_{2} = \sin \sqrt s ,\;\;k_{3} = \frac{\sqrt s }{{(k_{2} Bi + \sqrt s k_{1} )}}, \hfill \\ & k_{4} = \frac{Bi}{{\left( {k_{2} Bi + \sqrt s k_{1} } \right)}},\;\;k_{5} = \frac{2BR}{1 + R},\;\;k_{6} = \frac{1}{2 + R},\;\;k_{7} = k_{5} k_{6} , \hfill \\ & k_{8} = - \frac{{\sqrt s k_{3} k_{7} }}{{s\left( {s + k_{5} } \right)}},\;\;k_{9} = \frac{{\sqrt s k_{4} k_{7} }}{{s\left( {s + k_{5} } \right)}},\;\;k_{10} = \frac{2 + R}{2BR}, \hfill \\ & k_{11} = k_{10} k_{5} - 2,\;\;k_{12} = 2k_{8} + sk_{10} k_{8} ,\;\;k_{13} = 2k_{9} + sk_{10} k_{9} , \hfill \\ & k_{14} = \frac{{k_{11} }}{{\sqrt {k_{5} } }},\;\;k_{15} = - \frac{{k_{12} }}{\sqrt s },\;\;k_{16} = \frac{{k_{13} }}{\sqrt s },\;\;k_{17} = \sinh \left( {\sqrt {k_{5} } } \right), \hfill \\ & k_{18} = \cosh \left( {\sqrt {k_{5} } } \right),\;\;k_{19} = k_{14} k_{17} ,\;\;k_{20} = k_{14} k_{18} ,\;\;k_{21} = k_{15} k_{1} + k_{16} k_{2} , \hfill \\ & k_{22} = - \left( {k_{8} k_{2} + k_{9} k_{1} } \right),\;\;k_{23} = - \frac{{k_{22} + k_{9} }}{{k_{18} - 1}},\;\;k_{24} = - \frac{{k_{17} }}{{k_{18} - 1}}, \hfill \\ & k_{25} = k_{23} \left( {k_{19} + 2} \right) + k_{21} - 2k_{9} ),\;\;k_{26} = k_{24} \left( {k_{19} + 2} \right) + k_{20} , \hfill \\ & k_{27} = \frac{{k_{15} - k_{25} }}{{k_{26} - k_{14} }},\;\;k_{28} = k_{23} + k_{27} k_{24} ,\;\;k_{29} = k_{9} - k_{28} , \hfill \\ & k_{30} = - k_{15} - k_{14} k_{27} ,\;\;k_{31} = \frac{{k_{14} k_{28} }}{{\sqrt {k_{5} } }},\;\;k_{32} = \frac{{k_{14} k_{27} }}{{\sqrt {k_{5} } }},\;\;k_{33} = \frac{{ - k_{16} }}{\sqrt s }, \hfill \\ & k_{34} = \frac{{k_{15} }}{\sqrt s },\;\;k_{35} = - k_{29} + k_{30} - k_{31} + k_{33} , \hfill \\ \end{aligned}$$
$$\begin{aligned} & A_{1} = \frac{Bi}{Bi + 1},\;\;A_{2} = \frac{1}{Bi + 1},\;\;A_{3} = \frac{2BR}{1 + R}, \\ & A_{4} = \frac{1}{2 + R},\;\;A_{5} = \frac{{A_{4} A_{1} }}{2},\;\;A_{6} = A_{2} A_{4} , \\ & A_{7} = \frac{2 + R}{2BR},\;\;A_{8} = A_{7} A_{3} - 2,\;\;A_{9} = 2A_{5} A_{7} , \\ & A_{10} = \frac{{A_{8} }}{{\sqrt {A_{3} } }},\;\;A_{11} = \frac{2}{{3A_{5} }},\;\;A_{12} = \sinh \sqrt {A_{3} } , \\ & A_{13} = \cosh \sqrt {A_{3} } ,\;\;A_{14} = A_{9} - A_{6} - A_{11} ,\;\;A_{15} = A_{10} A_{12} , \\ & A_{16} = A_{10} A_{13} ,\;\;A_{17} = A_{5} + A_{6} ,\;\;A_{18} = - \frac{{A_{17} }}{{A_{13} - 1}}, \\ & A_{19} = - \frac{{A_{12} }}{{A_{13} - 1}},\;\;A_{20} = A_{16} - A_{10} + \left( {A_{15} + 2} \right)A_{19} , \\ & A_{21} = A_{14} + (A_{15} + 2)A_{18} ,\;\;A_{22} = - \frac{{A_{21} }}{{A_{20} }}, \\ & A_{23} = A_{18} + A_{19} A_{22} ,\;\;A_{24} = - A_{23} ,\;\;A_{25} = - A_{10} A_{22} , \\ & A_{26} = \frac{{A_{23} }}{{\sqrt {A_{3} } }},\;\;A_{27} = \frac{{A_{22} }}{{\sqrt {A_{3} } }},\;\;A_{28} = A_{24} + \frac{{A_{5} }}{3} + \frac{{A_{6} }}{2} - \frac{{A_{22} }}{{\sqrt {A_{3} } }}, \\ \end{aligned}$$
$$\begin{aligned} & p_{1} = \cosh \sqrt s i,\;\;p_{2} = \sinh \sqrt {si} ,\;\;p_{3} = \frac{{\sqrt {si} }}{{\left( {p_{2} Bi + \sqrt s i p_{1} } \right)}}, \\ & p_{4} = \frac{Bi}{{\left( {p_{2} Bi + \sqrt s i p_{1} } \right)}},\;\;k_{5} = \frac{2BR}{1 + R} = p_{5} ,\;\;p_{6} = \frac{1}{2 + R} = k_{6} , \\ & p_{7} = p_{5} p_{6} ,\;\;p_{8} = - \frac{{\sqrt {si} \, p_{3} p_{7} }}{{si\left( {si + p_{5} } \right)}},\;\;p_{9} = \frac{{\sqrt {si} \, p_{4} p_{7} }}{{si\left( {si + p_{5} } \right)}}, \\ & p_{10} = \frac{2 + R}{2BR} = k_{10} ,\;\;p_{11} = p_{10} p_{5} - 2,\;\;p_{12} = - 2p_{8} + si \, p_{10} p_{8} , \\ & p_{13} = - 2p_{9} + si\,p_{10} p_{9} ,\;\;p_{14} = \frac{{p_{11} }}{{\sqrt {p_{5} } }},\;\;p_{15} = \frac{{p_{12} }}{{\sqrt {si} }}, \\ & p_{16} = \frac{{p_{13} }}{{\sqrt {si} }},\;\;p_{17} = \sinh \left( {\sqrt {p_{5} } } \right),\;\;p_{18} = \cosh \left( {\sqrt {p_{5} } } \right), \\ & p_{19} = p_{14} p_{17} ,\;\;p_{20} = p_{14} p_{18} ,\;\;p_{21} = p_{15} p_{1} + p_{16} p_{2} , \\ & p_{22} = \left( {p_{8} p_{2} + p_{9} p_{1} } \right),\;\;p_{23} = \frac{{ - p_{22} + p_{9} }}{{p_{18} - 1}},\;\;p_{24} = \frac{{p_{17} }}{{1 - p_{18} }}, \\ & p_{25} = p_{14} p_{17} + 2,\;\;p_{26} = p_{21} + 2p_{9} ,\;\;p_{27} = p_{25} p_{24} + p_{20} , \\ & p_{28} = p_{26} + p_{23} p_{25} ,\;\;p_{29} = \frac{{p_{15} - p_{28} }}{{p_{27} - p_{14} }},\;\;p_{30} = p_{23} + p_{29} p_{24} , \\ & p_{31} = p_{30} - p_{9} ,\;\;p_{33} = \frac{{p_{14} p_{30} }}{{\sqrt {p_{5} } }},\;\;p_{34} = \frac{{p_{14} p_{29} }}{{\sqrt {p_{5} } }}, \\ & p_{35} = \frac{{p_{16} }}{{\sqrt {si} }},\;\;p_{36} = \frac{{p_{15} }}{{\sqrt {si} }},\;\;p_{37} = - p_{31} + p_{32} - p_{33} + p_{35} , \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, A.K., Singh, A.K. (2018). Natural Convection of a Micropolar Fluid Between Two Vertical Walls with Newtonian Heating/Cooling and Heat Source/Sink. In: Singh, M., Kushvah, B., Seth, G., Prakash, J. (eds) Applications of Fluid Dynamics . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5329-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5329-0_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5328-3

  • Online ISBN: 978-981-10-5329-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics