Skip to main content

Neurotransmitter Systems: Dopamine

  • Chapter
  • First Online:
The Therapeutic Use of N-Acetylcysteine (NAC) in Medicine
  • 1083 Accesses

Abstract

Dopamine is a major catecholamine neurotransmitter that acts both inside and outside the central nervous system. It has been implicated in many psychiatric and neurodegenerative diseases. Oxidation of dopamine by endogenous or exogenous factors creates toxic metabolites that can result in cytotoxicity, apoptosis, and mitochondrial dysfunction. N-Acetylcysteine (NAC), a glutathione precursor and antioxidant, has been studied as an agent to protect cells and animal models against the potential toxic effects of dopamine and its metabolites. This chapter systematically reviews the literature to summarize such studies. Overall NAC has been studied in relation to dopamine in cellular and animal models of disease that affects the central nervous system such as Alzheimer’s disease, ischemic brain injury, Parkinson’s disease, schizophrenia, and substance use disorders as well as cellular and animal models of nonnervous system diseases such as vitiligo, renal disease, and pituitary tumors. Studies have also examined the effect of NAC in protecting the brain from alterations in dopamine metabolism by the toxicants tungstate and polychlorinated biphenyls. The studies reviewed demonstrate that NAC can prevent and/or reverse many of the toxic effects of dopamine mediated by oxidative stress. NAC also reversed changes in dopamine levels induced by behavioral manipulations such as social isolation rearing in animal models of schizophrenia. The protective effects of NAC were mediated by its action as an antioxidant as well as a glutathione precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An JJ, Cho SR, Jeong DW, Park KW, Ahn YS, Baik JH (2003) Anti-proliferative effects and cell death mediated by two isoforms of dopamine D2 receptors in pituitary tumor cells. Mol Cell Endocrinol 206(1–2):49–62

    Article  CAS  Google Scholar 

  • Bagh MB, Maiti AK, Jana S, Banerjee K, Roy A, Chakrabarti S (2008) Quinone and oxyradical scavenging properties of N-acetylcysteine prevent dopamine mediated inhibition of Na+, K+-ATPase and mitochondrial electron transport chain activity in rat brain: implications in the neuroprotective therapy of Parkinson’s disease. Free Radic Res 42(6):574–581

    Article  CAS  Google Scholar 

  • Baik JH, Picetti R, Saiardi A, Thiriet G, Dierich A, Depaulis A, Le Meur M, Borrelli E (1995) Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377(6548):424–428. https://doi.org/10.1038/377424a0

    Article  CAS  PubMed  Google Scholar 

  • Bauzo RM, Kimmel HL, Howell LL (2012) The cystine-glutamate transporter enhancer N-acetyl-L-cysteine attenuates cocaine-induced changes in striatal dopamine but not self-administration in squirrel monkeys. Pharmacol Biochem Behav 101(2):288–296

    Article  CAS  Google Scholar 

  • Bianchi P, Seguelas MH, Parini A, Cambon C (2003) Activation of pro-apoptotic cascade by dopamine in renal epithelial cells is fully dependent on hydrogen peroxide generation by monoamine oxidases. J Am Soc Nephrol 14(4):855–862

    Article  CAS  Google Scholar 

  • Chen CM, Yin MC, Hsu CC, Liu TC (2007) Antioxidative and anti-inflammatory effects of four cysteine-containing agents in striatum of MPTP-treated mice. Nutrition 23(7–8):589–597

    Article  Google Scholar 

  • Choi HR, Shin JW, Lee HK, Kim JY, Huh CH, Youn SW, Park KC (2010) Potential redox-sensitive Akt activation by dopamine activates Bad and promotes cell death in melanocytes. Oxidative Med Cell Longev 3(3):219–224

    Article  Google Scholar 

  • Cucchi ML, Frattini P, Santagostino G, Preda S, Orecchia G (2003) Catecholamines increase in the urine of non-segmental vitiligo especially during its active phase. Pigment Cell Res 16(2):111–116

    Article  CAS  Google Scholar 

  • Deepmala, Slattery J, Kumar N, Delhey L, Berk M, Dean O, Spielholz C, Frye R (2015) Clinical trials of N-acetylcysteine in psychiatry and neurology: a systematic review. Neurosci Biobehav Rev 55:294–321. https://doi.org/10.1016/j.neubiorev.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  • Fukami G, Hashimoto K, Koike K, Okamura N, Shimizu E, Iyo M (2004) Effect of antioxidant N-acetyl-L-cysteine on behavioral changes and neurotoxicity in rats after administration of methamphetamine. Brain Res 30(1):90–95

    Article  Google Scholar 

  • Gere-Paszti E, Jakus J (2009) The effect of N-acetylcysteine on amphetamine-mediated dopamine release in rat brain striatal slices by ion-pair reversed-phase high performance liquid chromatography. Biomed Chromatogr 23(6):658–664

    Article  CAS  Google Scholar 

  • He H, Wang S, Tian J, Chen L, Zhang W, Zhao J, Tang H, Zhang X, Chen J (2015) Protective effects of 2,3,5,4′-tetrahydroxystilbene-2-O-beta-D-glucoside in the MPTP-induced mouse model of Parkinson’s disease: involvement of reactive oxygen species-mediated JNK, P38 and mitochondrial pathways. Eur J Pharmacol 767:175–182. https://doi.org/10.1016/j.ejphar.2015.10.023

    Article  CAS  PubMed  Google Scholar 

  • Hoyt KR, Reynolds IJ, Hastings TG (1997) Mechanisms of dopamine-induced cell death in cultured rat forebrain neurons: interactions with and differences from glutamate-induced cell death. Exp Neurol 143(2):269–281

    Article  CAS  Google Scholar 

  • Kang CD, Jang JH, Kim KW, Lee HJ, Jeong CS, Kim CM, Kim SH, Chung BS (1998) Activation of c-jun N-terminal kinase/stress-activated protein kinase and the decreased ratio of Bcl-2 to Bax are associated with the auto-oxidized dopamine-induced apoptosis in PC12 cells. Neurosci Lett 256(1):37–40

    Article  CAS  Google Scholar 

  • Kelly MA, Rubinstein M, Asa SL, Zhang G, Saez C, Bunzow JR, Allen RG, Hnasko R, Ben-Jonathan N, Grandy DK, Low MJ (1997) Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 19(1):103–113

    Article  CAS  Google Scholar 

  • Khorchid A, Fragoso G, Shore G, Almazan G (2002) Catecholamine-induced oligodendrocyte cell death in culture is developmentally regulated and involves free radical generation and differential activation of caspase-3. Glia 40(3):283–299

    Article  Google Scholar 

  • Kumar A, Singh BK, Ahmad I, Shukla S, Patel DK, Srivastava G, Kumar V, Pandey HP, Singh C (2012) Involvement of NADPH oxidase and glutathione in zinc-induced dopaminergic neurodegeneration in rats: similarity with paraquat neurotoxicity. Brain Res 15:48–64

    Article  Google Scholar 

  • Lee CS, Song EH, Park SY, Han ES (2003) Combined effect of dopamine and MPP+ on membrane permeability in mitochondria and cell viability in PC12 cells. Neurochem Int 43(2):147–154

    Article  CAS  Google Scholar 

  • Linsenbardt AJ, Wilken GH, Westfall TC, Macarthur H (2009) Cytotoxicity of dopaminochrome in the mesencephalic cell line, MN9D, is dependent upon oxidative stress. Neurotoxicology 30(6):1030–1035

    Article  CAS  Google Scholar 

  • Luo Y, Umegaki H, Wang X, Abe R, Roth GS (1998) Dopamine induces apoptosis through an oxidation-involved SAPK/JNK activation pathway. J Biol Chem 273(6):3756–3764

    Article  CAS  Google Scholar 

  • Lyng GD, Seegal RF (2008) Polychlorinated biphenyl-induced oxidative stress in organotypic co-cultures: experimental dopamine depletion prevents reductions in GABA. Neurotoxicology 29(2):301–308

    Article  CAS  Google Scholar 

  • Masserano JM, Gong L, Kulaga H, Baker I, Wyatt RJ (1996) Dopamine induces apoptotic cell death of a catecholaminergic cell line derived from the central nervous system. Mol Pharmacol 50(5):1309–1315

    CAS  PubMed  Google Scholar 

  • MeSH (2016) Dopamine D004298. MeSH Database. National Center for Biotechnology Information, US National Library of Medicine, Bethesda

    Google Scholar 

  • Migheli R, Godani C, Sciola L, Delogu MR, Serra PA, Zangani D, De Natale G, Miele E, Desole MS (1999) Enhancing effect of manganese on L-DOPA-induced apoptosis in PC12 cells: role of oxidative stress. J Neurochem 73(3):1155–1163

    Article  CAS  Google Scholar 

  • Moller M, Du Preez JL, Viljoen FP, Berk M, Emsley R, Harvey BH (2013a) Social isolation rearing induces mitochondrial, immunological, neurochemical and behavioural deficits in rats, and is reversed by clozapine or N-acetyl cysteine. Brain Behav Immun 30:156–167

    Article  CAS  Google Scholar 

  • Moller M, Du Preez JL, Viljoen FP, Berk M, Harvey BH (2013b) N-acetyl cysteine reverses social isolation rearing induced changes in cortico-striatal monoamines in rats. Metab Brain Dis 28(4):687–696

    Article  Google Scholar 

  • NCIT (2016) Dopamine C62025. National Cancer Institute Thesaurus, US National Institutes of Health, Bethesda. Version 16.07d

    Google Scholar 

  • Noh JS, Kim EY, Kang JS, Kim HR, Oh YJ, Gwag BJ (1999) Neurotoxic and neuroprotective actions of catecholamines in cortical neurons. Exp Neurol 159(1):217–224

    Article  CAS  Google Scholar 

  • Nunes C, Barbosa RM, Almeida L, Laranjinha J (2011) Nitric oxide and DOPAC-induced cell death: from GSH depletion to mitochondrial energy crisis. Mol Cell Neurosci 48(1):94–103

    Article  CAS  Google Scholar 

  • Offen D, Ziv I, Sternin H, Melamed E, Hochman A (1996) Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson’s disease. Exp Neurol 141(1):32–39

    Article  CAS  Google Scholar 

  • Park ES, Kim SY, Na JI, Ryu HS, Youn SW, Kim DS, Yun HY, Park KC (2007) Glutathione prevented dopamine-induced apoptosis of melanocytes and its signaling. J Dermatol Sci 47(2):141–149

    Article  CAS  Google Scholar 

  • Paszti-Gere E, Jakus J (2013) Protein phosphatases but not reactive oxygen species play functional role in acute amphetamine-mediated dopamine release. Cell Biochem Biophys 66(3):831–841

    Article  CAS  Google Scholar 

  • Perry TL, Yong VW, Clavier RM, Jones K, Wright JM, Foulks JG, Wall RA (1985) Partial protection from the dopaminergic neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by four different antioxidants in the mouse. Neurosci Lett 60(2):109–114

    Article  CAS  Google Scholar 

  • Qi H, Zhao J, Han Y, Lau AS, Rong J (2012) Z-ligustilide potentiates the cytotoxicity of dopamine in rat dopaminergic PC12 cells. Neurotox Res 22(4):345–354

    Article  CAS  Google Scholar 

  • Rahimmi A, Khosrobakhsh F, Izadpanah E, Moloudi MR, Hassanzadeh K (2015) N-acetylcysteine prevents rotenone-induced Parkinson’s disease in rat: an investigation into the interaction of parkin and Drp1 proteins. Brain Res Bull 113:34–40

    Article  CAS  Google Scholar 

  • Sachdeva S, Pant SC, Kushwaha P, Bhargava R, Flora SJ (2015) Sodium tungstate induced neurological alterations in rat brain regions and their response to antioxidants. Food Chem Toxicol 82:64–71

    Article  CAS  Google Scholar 

  • Serra PA, Esposito G, Enrico P, Mura MA, Migheli R, Delogu MR, Miele M, Desole MS, Grella G, Miele E (2000) Manganese increases L-DOPA auto-oxidation in the striatum of the freely moving rat: potential implications to L-DOPA long-term therapy of Parkinson’s disease. Br J Pharmacol 130(4):937–945

    Article  CAS  Google Scholar 

  • Serra PA, Esposito G, Delogu MR, Migheli R, Rocchitta G, Miele E, Desole MS, Miele M (2001) Analysis of S-nitroso-N-acetylpenicillamine effects on dopamine release in the striatum of freely moving rats: role of endogenous ascorbic acid and oxidative stress. Br J Pharmacol 132(4):941–949

    Article  CAS  Google Scholar 

  • Sharma A, Kaur P, Kumar V, Gill KD (2007) Attenuation of 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine induced nigrostriatal toxicity in mice by N-acetyl cysteine. Cell Mol Biol 53(1):48–55

    CAS  PubMed  Google Scholar 

  • Vindis C, Seguelas MH, Lanier S, Parini A, Cambon C (2001) Dopamine induces ERK activation in renal epithelial cells through H2O2 produced by monoamine oxidase. Kidney Int 59(1):76–86

    Article  CAS  Google Scholar 

  • Wan FJ, Tung CS, Shiah IS, Lin HC (2006) Effects of alpha-phenyl-N-tert-butyl nitrone and N-acetylcysteine on hydroxyl radical formation and dopamine depletion in the rat striatum produced by d-amphetamine. European Neuropsychopharmacol 16(2):147–153

    Article  CAS  Google Scholar 

  • Weingarten P, Bermak J, Zhou QY (2001) Evidence for non-oxidative dopamine cytotoxicity: potent activation of NF-kappa B and lack of protection by anti-oxidants. J Neurochem 76(6):1794–1804

    Article  CAS  Google Scholar 

  • Zafar KS, Inayat-Hussain SH, Ross D (2007) A comparative study of proteasomal inhibition and apoptosis induced in N27 mesencephalic cells by dopamine and MG132. J Neurochem 102(3):913–921

    Article  CAS  Google Scholar 

  • Zhou ZD, Kerk SY, Xiong GG, Lim TM (2009) Dopamine auto-oxidation aggravates non-apoptotic cell death induced by over-expression of human A53T mutant alpha-synuclein in dopaminergic PC12 cells. J Neurochem 108(3):601–610

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihit Kumar .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Online Table 3.1

Summary of systematic literature review examining the association between dopamine and NAC (DOCX 23 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, N. (2019). Neurotransmitter Systems: Dopamine. In: Frye, R., Berk, M. (eds) The Therapeutic Use of N-Acetylcysteine (NAC) in Medicine. Adis, Singapore. https://doi.org/10.1007/978-981-10-5311-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5311-5_3

  • Published:

  • Publisher Name: Adis, Singapore

  • Print ISBN: 978-981-10-5310-8

  • Online ISBN: 978-981-10-5311-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics