Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 628))

Abstract

In this paper, ensemble methods for different base classifiers are proposed. An ensemble technique is a supervised learning algorithm that combines a group of classifiers in order to acquire an overall model with more exact decisions. The classifiers that are support vector machine (SVM), naive Bayes (NB), and back propagation neural network (BPNN) are trained and tested on different gene expression datasets using both random selection method and k-fold cross-validation method. Both binary-class and multi-class datasets are used for evaluation of effectiveness of the ensemble method. Various publicly available gene expression datasets have been used for experiments in order to find the accuracy and effectiveness of the ensemble technique. Performance of the different classification methods and ensemble methods has been compared by using the accuracy values. The results have shown that the accuracy for the gene expression datasets has been increased by using the ensemble methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kun, M. 2013. A Vision-Based Hybrid Method for Eye Detection and Tracking. International Journal of Security and Its Applications.

    Google Scholar 

  2. Rokach, L. 2010. Ensemble Methods in Supervised Learning, vol. 33, 1–33. Springer.

    Google Scholar 

  3. Rokach, L. 2005. Ensemble Methods for Classifiers. Data Mining and Knowledge Discovery Handbook, Springer, US, 957–980.

    Google Scholar 

  4. Enriquez, F., F.L. Cruz, F. Javier Ortega, C.G. Vallego, and J.A. Troyano. 2013. A Comparative Study of Combination Applied to NLP Tasks. Information Fusion 14: 255–267.

    Article  Google Scholar 

  5. Zhan, G.P. 2000. Neural Networks for Classification: A Survey. IEEE Transactions on Systems, Man and Cybernetics-Part. C: Applications and Reviews 30 (4): 451–446.

    Google Scholar 

  6. Ziadduin, S., and M.N. Dailey. 2008. Iris Recognition Performance Enhancement Using Weighted Majority Voting. 15th IEEE Inter-National Conference on Image Processing, 227–280.

    Google Scholar 

  7. Isa, S.M., M. Ivan Fanany, W. Jatmiko, and A. Murni Arymurthy. 2011. Sleep Apnea Detection from ECG Signal: Analysis on Optimal Features. In Principal Components and Nonlinearity, 5th International Conference on Bioinformatics and Biomedical Engineering.

    Google Scholar 

  8. Kittler, J., M. Hatef, R.P.W. Duin, and J. Matas. 1998. On Combining Classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 2 (3): 226–239.

    Article  Google Scholar 

  9. Kim, Seoyoung, and Y. Kim. 2012. Application-Specific Cloud Provisioning Model Using Job Profiles Analysis. In IEEE 14th Conference on High Performance Computing and Communication and IEEE 9th International Conference on Embedded Software and Systems.

    Google Scholar 

  10. Luo, L., E.F. Wood, and M. Pan. 2007. Bayesian Merging of Multiple Climate Model Forecasts for Seasonal Hydrological Predictions. Journal of Geophysical Research 112: 1–13.

    Article  Google Scholar 

  11. Ajitha, P., and G. Gunasekaran. 2014. Semantic Based Intuitive Topic Search Engine. International Review on Computers and Software.

    Google Scholar 

  12. Chen, Z., J. Li, L. Wei, W. Xu, and Y. Shi. 2011. Multiple-Kernel SVM Based Multiple-Task Oriented Data Mining System for Gene Expression Data Analysis. Expert Systems with Applications 38: 12151–12159.

    Article  Google Scholar 

  13. Hansen, L., and P. Salamon. 1990. Neural Network Ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12: 993–1001.

    Article  Google Scholar 

  14. Rokach. 2014. Decision Forests, Series in Machine Perception and Artificial Intelligence.

    Google Scholar 

  15. Helman, Paul, Robert Vero Susan, R. Atlas, and Cheryl Will-man. 2004. A Bayesian Network Classification Methodology for Gene Expression Data. Journal of Computational Biology 11 (4): 581–615.

    Article  Google Scholar 

  16. Tsiliki, G., and S. Kossida. 2011. Fusion Methodologies for Biomedical Data. Journal of Proteomics 74: 2774–2785.

    Article  Google Scholar 

  17. Kapp, M.N., R. Sabourin, and P. Maupin. 2012. A Dynamic Model Selection Strategy for Support Vector Machine Classifiers. Applied Soft Computing 12 (8): 2550–2565.

    Article  Google Scholar 

  18. Dzeroski, S., and B. Zenko. 2004. Is Combining Classiers with Stacking Better Than Selecting the Best One? Machine Learning 54: 255–273.

    Article  MATH  Google Scholar 

  19. Hong, Zi, and Jing-vu Yang. 1991. Optimal Discriminant Plane for a Small Number of Samples and Design Method of Classifier on the Plane. Pattern Recognition 24 (4): 317–324.

    Article  MathSciNet  Google Scholar 

  20. http://archieve.ics.uci.edu/ml/datasets/iris,2000-07-11.

  21. http://archieve.ics.uci.edu/ml/datasets/yeast+dataset,1997-06-06.

  22. http://archieve.ics.uci.edu/ml/datasets/ecoli,1997-06-06.

  23. Seeja, K.R., and Shweta. 2011. Microarray Data Classification Using Support Vector Machine. International Journal on Biometric and Bioinformatics 5 (1): 10–15.

    Google Scholar 

  24. Shah, C., and A.G. Jivani. 2013. Comparison of Data Mining Classification Algorithms for Breast Cancer Prediction. In Proceedings. 4th International Conference on Computing, Communication and Net-working Technologies, 1–4.

    Google Scholar 

  25. ReboiroJato, M., F. Diaz, D. Glez-Pena, and F. Fdez-Riverola. 2014. A Novel Ensemble of Classifiers That Use Biological Relevant Gene Sets for Micro-array Classification. Applied Soft Computing 17: 117–126.

    Article  Google Scholar 

  26. Opitz, D., and R. Maclin. 1999. Popular Ensemble Methods: An Empirical Study. Journal of Artificial Intelligence Research 11: 169–198.

    MATH  Google Scholar 

  27. Morrison, D., and L.C. De Silva. 2007. Voting Assembles of Spoken a ECT Classification. Journal of Network and Computer Applications 30: 1356–1365.

    Article  Google Scholar 

  28. AliBagheri, M., Q. Gao, and S. Escalera. 2013. Logo Recognition Based on the Dempster-Shafer Fusion of Multiple Classifiers. Advances in Artificial Intelligence Lecture Notes in Computer Science 7884: 1–12.

    MathSciNet  Google Scholar 

  29. Sohn, S.Y., and S. Ho Lee. 2003. Data Fusion, Ensemble and Clustering to Improve the Classification Accuracy for the Severity of Road Track Accidents in Korea. Safety Science 41: 1–14.

    Google Scholar 

  30. Hanczar, B., and A. BarHen. 2012. A New Measure of Classifier Performance for Gene Expression Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9 (5): 1379–1386.

    Article  Google Scholar 

  31. Tong, M., K. Hong Liu, C. Xu, and W. Ju. 2013. An Ensemble of SVM Classifiers Based on Gene Pairs. Computers in Biology and Medicine 43: 729–737.

    Article  Google Scholar 

  32. Liu, H., L. Liu, and H. Zhang. 2010. Ensemble Gene Selection by Grouping for Microarray Data Classification. Journal of Biomedical Informatics 43: 81–87.

    Article  Google Scholar 

  33. Reboiro-Jato, M., F. Diaz, D. Glez-Pena, and F. Fdez-Riverola. 2014. A Novel Ensemble of Classifiers That Use Biological Relevant Gene Sets for Microarray Classification. Applied Soft Computing 17: 117–126.

    Article  Google Scholar 

  34. Nanni, L., and A. Lumini. 2007. Ensemblator: An Ensemble of Classifiers for Reliable Classification of Biological Data. Pattern Recognition Letters 28 (5): 622–630.

    Article  Google Scholar 

  35. Lee, J., M. Park, and S. Song. 2005. An Extensive Comparison of Recent Classification Tools Applied to Microarray Data. Computational Statistics and Data Analysis 48 (4): 869–885.

    Article  MathSciNet  MATH  Google Scholar 

  36. Boulesteix, A., C. Strobl, T. Augustin, and M. Daumer. 2008. Evaluating Microarray Based Classifiers: An Overview. Cancer Informatics 6: 77–97.

    Article  Google Scholar 

  37. Xu, L., A. Krzyzak and C.Y. Suen. 1992. Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition. IEEE Transactions on Systems, Man and Cybernetics 22 (3): 418–435.

    Google Scholar 

  38. Chen, M.S., J. Han, and P.S. Yu. 1996. Data Mining: An Overview from a Database Perspective. IEEE Transactions on Knowledge and Data Engineering 8: 866–883.

    Article  Google Scholar 

  39. Han, J., and M. Kamber. 2001. Data Mining, Concepts and Techniques, 67–120. Morgann Kaufmann Publishers.

    Google Scholar 

  40. Ester, M., H.P. Kriegel, J. Sander, and X. Xu. 1996. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, vol. 96, 226–231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Panda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panda, M., Mishra, D., Mishra, S. (2018). Ensemble Methods for Improving Classifier Performance. In: Reddy, M., Viswanath, K., K.M., S. (eds) International Proceedings on Advances in Soft Computing, Intelligent Systems and Applications . Advances in Intelligent Systems and Computing, vol 628. Springer, Singapore. https://doi.org/10.1007/978-981-10-5272-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5272-9_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5271-2

  • Online ISBN: 978-981-10-5272-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics