Skip to main content

Pharmacokinetics of Antimicrobials in Endophthalmitis

  • Chapter
  • First Online:
Endophthalmitis

Abstract

Appropriate ocular pharmacokinetics of antimicrobial agent injected intravitreally for the early treatment of endophthalmitis is the determinant of clinical outcome. Therefore, understanding the growth of microbe inside the eye, its related inflammation which in turn altering the blood ocular barrier functions is important for the activity of antimicrobial agents. Altered antimicrobial drug levels during inflammation can exhibit a profound impact on their pharmacodynamics and it is required to be correlated with a suitable PK/PD model to rationalize the therapy. The extent of inflammation altering blood ocular barriers and type of transporters responsible for the clearance of drugs from the eye along with its antimicrobial PK/PD correlation is analysed in this review. Intravitreal injection of ceftazidime and vancomycin for endopthalmitis has been taken as a prototype to analyse the pharmacokinetic correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrose PG, Bhavnani SM, et al. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis. 2007;44:79–86.

    Article  CAS  PubMed  Google Scholar 

  2. Cunha Vaz J, Marques FB, Fernandes R, et al. Drug transport across blood-ocular barriers and pharmacokinetics. In: Velpandian T, editor. Pharmacology of ocular therapeutics. Cham: Springer; 2016. p. 37.

    Chapter  Google Scholar 

  3. Hua WJ, Hua WX, Jian Z, et al. The role of drug transporters in the pharmacokinetics of antibiotics. Curr Drug Metab. 2016;17(8):799. PubMed PMID: 27364830.

    Article  CAS  PubMed  Google Scholar 

  4. Benoist d’Azy C, Pereira B, Naughton G, et al. Antibioprophylaxis in prevention of endophthalmitis in intravitreal injection: a systematic review and meta-analysis. PLoS One. 2016;11:e0156431.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Peyman GA, Daun M. Prophylaxis of endophthalmitis. Ophthalmic Surg. 1994;25:671–4.

    CAS  PubMed  Google Scholar 

  6. López-Cabezas C, Muner DS, Massa MR, et al. Antibiotics in endophthalmitis: microbiological and pharmacokinetic considerations. Curr Clin Pharmacol. 2010;5:47–54.

    Article  PubMed  Google Scholar 

  7. Yao K, Zhu Y, Zhu Z, et al. The incidence of postoperative endophthalmitis after cataract surgery in China: a multicenter investigation of 2006-2011. Br J Ophthalmol. 2013;97:1312–7.

    Article  PubMed  Google Scholar 

  8. Sobaci G, Tuncer K, Taş A, et al. The effect of intraoperative antibiotics in irrigating solutions on aqueous humor contamination and endophthalmitis after phacoemulsification surgery. Eur J Ophthalmol. 2003;13:773–8.

    CAS  PubMed  Google Scholar 

  9. Ram J, Kaushik S, Brar GS, et al. Prevention of postoperative infections in ophthalmic surgery. Indian J Ophthalmol. 2001;49:59–69.

    CAS  PubMed  Google Scholar 

  10. Gower EW, Lindsley K, Nanji AA, et al. Perioperative antibiotics for prevention of acute endophthalmitis after cataract surgery. Cochrane Database Syst Rev. 2013;7:CD006364.

    PubMed Central  Google Scholar 

  11. Velpandian T. Intraocular penetration of antimicrobial agents in ophthalmic infections and drug delivery strategies. Expert Opin Drug Deliv. 2009;6:255–70.

    Article  CAS  PubMed  Google Scholar 

  12. Callegan MC, Booth MC, Jett BD, Gilmore MS. Pathogenesis of gram-positive bacterial endophthalmitis. Infect Immun. 1999;67(7):3348–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jett BD, Parke DW II, Booth MC, Gilmore MS. Host/parasite interactions in bacterial endophthalmitis. Zentralbl Bakteriol. 1997;285:341–67.

    Article  CAS  PubMed  Google Scholar 

  14. Tamagnini LM, González RD. Bacteriological stability and growth kinetics of Pseudomonas aeruginosa in bottled water. J Appl Microbiol. 1997;83:91–4.

    Article  CAS  PubMed  Google Scholar 

  15. Jacobs DR, Cohen HB. The inflammatory role of endotoxin in rabbit gram-negative bacterial endophthalmitis. Invest Ophthalmol Vis Sci. 1984;25:1074–9.

    CAS  PubMed  Google Scholar 

  16. Novosad BD, Astley RA, Callegan MC. Role of Toll-like receptor (TLR) 2 in experimental Bacillus cereus endophthalmitis. PLoS One. 2011;6:e28619. https://doi.org/10.1371/journal.pone.0028619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nicolau DP. Predicting antibacterial response from pharmacodynamic and pharmacokinetic profiles. Infection. 2001;29:11–5.

    CAS  PubMed  Google Scholar 

  18. Endophthalmitis Vitrectomy Study Group. Results of the endophthalmitis vitrectomy study. A randomized trial of immediate vitrectomy and of intravenous antibiotics for the treatment of postoperative bacterial endophthalmitis. Arch Ophthalmol. 1995;113:1479–96.

    Article  Google Scholar 

  19. Radhika M, Mithal K, Bawdekar A, et al. Pharmacokinetics of intravitreal antibiotics in endophthalmitis. J Ophthalmic Inflamm Infect. 2014;4:22. https://doi.org/10.1186/s12348-014-0022-z.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev. 2006;58:1136–63.

    Article  CAS  PubMed  Google Scholar 

  21. Senthilkumari S, Velpandian T, Biswas NR, et al. Evidencing the modulation of P-glycoprotein at blood-ocular barriers using gamma scintigraphy. Curr Eye Res. 2009;34:73–7.

    Article  CAS  PubMed  Google Scholar 

  22. Nirmal J, Velpandian T, Singh SB, et al. Evaluation of the functional importance of organic cation transporters on the ocular disposition of its intravitreally injected substrate in rabbits. Curr Eye Res. 2012;37:1127–35.

    Article  CAS  PubMed  Google Scholar 

  23. Barza M, Kane A, Baum J. Pharmacokinetics of intravitreal carbenicillin, cefazolin, and gentamicin in rhesus monkeys. Invest Ophthalmol Vis Sci. 1983;24:1602–6.

    CAS  PubMed  Google Scholar 

  24. Gupta SK, Velpandian T, Dhingra N, Jaiswal J. Intravitreal pharmacokinetics of plain and liposome-entrapped fluconazole in rabbit eyes. J Ocul Pharmacol Ther. 2000;16:511–8.

    Article  CAS  PubMed  Google Scholar 

  25. Lee J, Pelis RM. Drug transport by the blood-aqueous humor barrier of the eye. Drug Metab Dispos. 2016;44:1675. pii: dmd.116.069369.

    Article  PubMed  Google Scholar 

  26. Nirmal J, Sirohiwal A, Singh SB, et al. Role of organic cation transporters in the ocular disposition of its intravenously injected substrate in rabbits: implications for ocular drug therapy. Exp Eye Res. 2013;116:27–35.

    Article  CAS  PubMed  Google Scholar 

  27. Nirmal J, Singh SB, Biswas NR, et al. Potential pharmacokinetic role of organic cation transporters in modulating the transcorneal penetration of its substrates administered topically. Eye (Lond). 2013;27:1196–203.

    Article  CAS  Google Scholar 

  28. Senthilkumari S, Velpandian T, Biswas NR, et al. Evaluation of the impact of P-glycoprotein (P-gp) drug efflux transporter blockade on the systemic and ocular disposition of P-gp substrate. J Ocul Pharmacol Ther. 2008;24:290–300.

    Article  CAS  PubMed  Google Scholar 

  29. Senthilkumari S, Velpandian T, Biswas NR, et al. Evaluation of the modulation of P-glycoprotein (P-gp) on the intraocular disposition of its substrate in rabbits. Curr Eye Res. 2008;33:333–43.

    Article  CAS  PubMed  Google Scholar 

  30. Talluri RS, Samanta SK, Gaudana R, Mitra AK. Synthesis, metabolism and cellular permeability of enzymatically stable dipeptide prodrugs of acyclovir. Int J Pharm. 2008;361:118–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sharma HP, Singh B, Halder N, Velpandian T. Possible involvement of the nucleoside transporters in the ocular kinetics of intravitreally administered ribavirin. Int J Physiol Pharmacol. 2015;59:59.

    Google Scholar 

  32. Meredith TA, Mandell BA, Aguilar EA, et al. Amikacin levels after intravitreal injection: effects of inflammation and surgery. Invest Ophthalmol Vis Sci. 1992;33:747–53.

    Google Scholar 

  33. Rajpal, Srinivas A, Azad RV, et al. Evaluation of vitreous levels of gatifloxacin after systemic administration in inflamed and non-inflamed eyes. Acta Ophthalmol. 2009;87:648–52.

    Article  CAS  PubMed  Google Scholar 

  34. Ferencz JR, Assia EI, Diamantstein L, Rubinstein E. Vancomycin Concentration in the vitreous after intravenous and intravitreal administration for postoperative endophthalmitis. Arch Ophthalmol. 1999;117:1023–7.

    Article  CAS  PubMed  Google Scholar 

  35. Ficker L, Meredith TA, Gardner S, Wilson LA. Cefazolin levels after intravitreal injection. Effects of inflammation and surgery. Invest Ophthalmol Vis Sci. 1990;31:502–5.

    CAS  PubMed  Google Scholar 

  36. Khamdang S, Takeda M, Babu E, et al. Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics. Eur J Pharmacol. 2003;465:1–7.

    Article  CAS  PubMed  Google Scholar 

  37. Roger C, Wallis SC, Muller L, et al. Influence of renal replacement modalities on amikacin population pharmacokinetics in critically ill patients on continuous renal replacement therapy. Antimicrob Agents Chemother. 2016;60:4901. pii: AAC.00828-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schwartz SG, Flynn HW Jr. Update on the prevention and treatment of endophthalmitis. Exp Rev Ophthalmol. 2014;9:425–30.

    Article  CAS  Google Scholar 

  39. Rubio-Aliaga I, Daniel H. Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica. 2008;38:1022–42.

    Article  CAS  PubMed  Google Scholar 

  40. Lefèvre S, Saleh M, Marcellin L, et al. Daptomycin versus vancomycin in a methicillin-resistant Staphylococcus aureus endophthalmitis rabbit model: bactericidal effect, safety, and ocular pharmacokinetics. Antimicrob Agents Chemother. 2012;56:2485–92.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet. 2004;43:925–42.

    Article  CAS  PubMed  Google Scholar 

  42. Ganapathy ME, Huang W, Rajan DP, et al. Beta-lactam antibiotics as substrates for Organic Cation Transporter N2, an organic cation/carnitine transporter. J Biol Chem. 2000;275:1699–707.

    Article  CAS  PubMed  Google Scholar 

  43. Aguilar HE, Meredith TA, Shaarawy A, et al. Vitreous cavity penetration of ceftazidime after intravenous administration. Retina. 1995;15:154–9.

    Article  CAS  PubMed  Google Scholar 

  44. Meredith TA. Antimicrobial pharmacokinetics in endophthalmitis treatment: studies of ceftazidime. Trans Am Ophthalmol Soc. 1993;91:653–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Loo AS, Neely M, Anderson EJ, et al. Pharmacodynamic target attainment for various ceftazidime dosing schemes in high-flux hemodialysis. Antimicrob Agents Chemother. 2013;57:5854–9.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jones RN, Barry AL, Thornsberry C, et al. Ceftazidime, a Pseudomonas-active cephalosporin: in-vitro antimicrobial activity evaluation including recommendations for disc diffusion susceptibility tests. J Antimicrob Chemother. 1981;8(Suppl B):187–211.

    Article  CAS  PubMed  Google Scholar 

  47. Hagos Y, Wolff NA. Assessment of the role of renal Organic Anion Transporters in drug-induced nephrotoxicity. Toxins. 2010;2:2055–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Falavarjani KG, Alemzadeh SA, Habibi A, et al. Pseudomonas aeruginosa endophthalmitis: clinical outcomes and antibiotic susceptibilities. Ocul Immunol Inflamm. 2016;24:1–5.

    Article  Google Scholar 

  49. Das U, Nath M, Chadrasekharan D, et al. Evaluation of intraocular penetration of Meropenem and Ertapenem after systemic administration in non-inflamed eyes. Indian J Pharm. 2014;46(Suppl 1):S62.

    Google Scholar 

  50. Barza M, Lynch E, Baum JL. Pharmacokinetics of newer cephalosporins after subconjunctival and intravitreal injection in rabbits. Arch Ophthalmol. 1993;111:121–5.

    Article  CAS  PubMed  Google Scholar 

  51. Deniz N, Aydemir O, Güler M, et al. Comparison of efficiency of intravitreal ceftazidime and intravitreal cefepime in the treatment of experimental Pseudomonas aeruginosa endophthalmitis. Indian J Ophthalmol. 2013;61:525–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thirumurthy Velpandian Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Velpandian, T., Nath, M. (2018). Pharmacokinetics of Antimicrobials in Endophthalmitis. In: Das, T. (eds) Endophthalmitis . Springer, Singapore. https://doi.org/10.1007/978-981-10-5260-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5260-6_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5259-0

  • Online ISBN: 978-981-10-5260-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics