Skip to main content

A Spiking Neural Network Model for Sound Recognition

  • Conference paper
  • First Online:
Cognitive Systems and Signal Processing (ICCSIP 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 710))

Included in the following conference series:

Abstract

This paper presents a spiking neural network (SNN) model of leaky integrate-and-fire (LIF) neurons for sound recognition, which provides a way to simulate the brain processes. Neural coding and learning by processing external stimulus and recognizing different patterns are important parts in SNN model. Based on features extracted from the time-frequency representation of sound, we present a time-frequency encoding method which can retain the adequate information of original sound and generate spikes from represented features. The generated spikes are further used to train the SNN model with plausible supervised synaptic learning rule to efficiently perform various classification tasks. By testing the encoding and learning methods in RWCP database, experiments demonstrate that the proposed SNN model can achieve the robust performance for sound recognition across a variety of noise conditions.

This work was supported by the National Natural Science Foundation of China under grant number 61673283.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mouel, C., Harris, K.D., Yger, P.: Supervised learning with decision margins in pools of spiking neurons. J. Comput. Neurosci. 37(2), 333–344 (2014)

    Article  MathSciNet  Google Scholar 

  2. Indiveri, G., Liu, S.C.: Memory and information processing in neuromorphic systems. Proc. IEEE 103(8), 1379–1397 (2015)

    Article  Google Scholar 

  3. Bohte, S.M.: The evidence for neural information processing with precise spike-times: a survey. Nat. Comput. 3(2), 195–206 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benchenane, K., Peyrache, A., Khamassi, M., Tierney, P.L., Gioanni, Y., Battaglia, F.P., Wiener, S.I.: Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron 66(6), 921–936 (2010)

    Article  Google Scholar 

  5. Meister, M., Berry II, M.J.: The neural code of the retina. Neuron 22(3), 435–450 (1999)

    Article  Google Scholar 

  6. Heil, P.: Auditory cortical onset responses revisited. I. First-spike timing. J. Neurophysiol. 77(5), 2616–2641 (1997)

    Google Scholar 

  7. Perez-Orive, J., Mazor, O., Turner, G.C., Cassenaer, S., Wilson, R.I., Laurent, G.: Oscillations and sparsening of odor representations in the mushroom body. Science 297(5580), 359–365 (2002)

    Article  Google Scholar 

  8. Mehta, M.R., Lee, A.K., Wilson, M.A.: Role of experience and oscillations in transforming a rate code into a temporal coding. Nature 417(417), 741–746 (2002)

    Article  Google Scholar 

  9. Vanrullen, R., Guyonneau, R., Thorpe, S.J.: Spike times make sense. Trends Neurosci. 28(1), 1–4 (2005)

    Article  Google Scholar 

  10. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  11. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  12. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity . Cambridge University Press, Cambridge (2002)

    Google Scholar 

  13. Panzeri, S., Brunel, N., Logothetis, N.K., Kayser, C.: Sensory neural codes using multiplexed temporal scales. Trends Neurosci. 33(3), 111–120 (2010)

    Article  Google Scholar 

  14. Tiesinga, P., Fellous, J.M., Sejnowski, T.J.: Regulation of spike timing in visual cortical circuits. Nat. Rev. Neurosci. 9(2), 97–107 (2008)

    Article  Google Scholar 

  15. Gutig, R.: To spike, or when to spike? Curr. Opin. Neurobiol. 25, 134–139 (2014)

    Article  Google Scholar 

  16. Natarajan, R., Huys, Q.J., Dayan, P., Zemel, R.S.: Encoding and decoding spikes for dynamic stimuli. Neural Comput. 20(20), 2325–2360 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leutgeb, S., Leutgeb, J.K., Moser, M.B., Moser, E.I.: Place cells, spatial maps and the population code for memory. Curr. Opin. Neurobiol. 15(6), 738–746 (2006)

    Article  Google Scholar 

  18. Masquelier, T., Guyonneau, R., Thorpe, S.J.: Competitive STDP-based spike pattern learning. Neural Comput. 21(5), 1259–1276 (2009)

    Article  MATH  Google Scholar 

  19. Gütig, R., Sompolinsky, H., Tempotron, T.: A neuron that learns spike timing-based decisions. Nat. Neurosci. 9(3), 420–428 (2006)

    Article  Google Scholar 

  20. Ponulak, F., Kasiński, A.: Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting. Neural Comput. 22(2), 467–510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu, Q., Tang, H., Tan, K.C., Li, H.: Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns. PLoS ONE 8(11), e78318 (2013)

    Article  Google Scholar 

  22. Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N., Benosman, R.: Hfirst: a temporal approach to object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2028–2040 (2015)

    Article  Google Scholar 

  23. Zhao, B., Ding, R., Chen, S., Linares-Barranco, B., Tang, H.: Feedforward categorization on aer motion events using cortex-like features in a spiking neural network. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 24–31 (2015)

    Article  MathSciNet  Google Scholar 

  24. Hu, J., Tang, H., Tan, K.C., Li, H., Shi, L.: A spike-timing-based integrated model for pattern recognition. Neural Comput. 25(2), 450–472 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Brody, C.D., Hopfield, J.J.: Simple networks for spike-timing-based computation, with application to olfactory processing. Neuron 37(5), 843–852 (2003)

    Article  Google Scholar 

  26. Yu, Q., Yan, R., Tang, H., Tan, K.C., Li, H.: A spiking neural network system for robust sequence recognition. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 621–635 (2016)

    Article  MathSciNet  Google Scholar 

  27. O’Shaughnessy, D.: Automatic speech recognition: history, methods and challenges. Pattern Recogn. 41(10), 2965–2979 (2008)

    Article  MATH  Google Scholar 

  28. Cowling, M., Sitte, R.: Comparison of techniques for environmental sound recognition. Pattern Recogn. Lett. 24(15), 2895–2907 (2003)

    Article  Google Scholar 

  29. Woodard, J.P.: Modeling and classification of natural sounds by product code hidden markov models. IEEE Trans. Signal Process. 40(7), 1833–1835 (1992)

    Article  MATH  Google Scholar 

  30. Goldhor, R.S.: Recognition of environmental sounds. In: 1993 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 1, pp. 149–152 (1993)

    Google Scholar 

  31. Liu, L.: Ground vehicle acoustic signal processing based on biological hearing models. Masters Thesis, University of Maryland, College Park (1999)

    Google Scholar 

  32. Valero, X., Alias, F.: Gammatone cepstral coefficients: biologically inspired features for non-speech audio classification. IEEE Trans. Multimedia 14(6), 1684–1689 (2012)

    Article  Google Scholar 

  33. Dennis, J., Yu, Q., Tang, H., Li, H.: Temporal coding of local spectrogram features for robust sound recognition. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 803–807 (2013)

    Google Scholar 

  34. Real World Computing Partnership, “RWCP Sound Scene Database”. http://tosa.mri.co.jp/sounddb/index.htm

  35. Nguyen, V.A., Starzyk, J.A., Goh, W.-B., Jachyra, D.: Neural network structure for spatio-temporal long-term memory. IEEE Trans. Neural Netw. Learn. Syst. 23(6), 971–983 (2012)

    Article  Google Scholar 

  36. Hu, J., Tang, H., Tan, K.C., Li, H.: How the brain formulates memory: a spatio-temporal model research frontier. IEEE Comput. Intell. Mag. 11(2), 56–68 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajin Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Xiao, R., Yan, R., Tang, H., Tan, K.C. (2017). A Spiking Neural Network Model for Sound Recognition. In: Sun, F., Liu, H., Hu, D. (eds) Cognitive Systems and Signal Processing. ICCSIP 2016. Communications in Computer and Information Science, vol 710. Springer, Singapore. https://doi.org/10.1007/978-981-10-5230-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5230-9_57

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5229-3

  • Online ISBN: 978-981-10-5230-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics