Skip to main content

Interactive Urban Synthesis

Computational Methods for Fast Prototyping of Urban Design Proposals

  • Conference paper
  • First Online:
Computer-Aided Architectural Design. Future Trajectories (CAADFutures 2017)

Abstract

In this paper, we present a method for generating fast conceptual urban design prototypes. We synthesize spatial configurations for street networks, parcels and building volumes. Therefore, we address the problem of implementing custom data structures for these configurations and how the generation process can be controlled and parameterized. We exemplify our method by the development of new components for Grasshopper/Rhino3D and their application in the scope of selected case studies. By means of these components, we show use case applications of the synthesis algorithms. In the conclusion, we reflect on the advantages of being able to generate fast urban design prototypes, but we also discuss the disadvantages of the concept and the usage of Grasshopper as a user interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rouse, M.: Cognitive computing. In: WhatIs.com. http://whatis.techtarget.com/definition/cognitive-computing (2014). Accessed 15 March 2016

  2. Koenig, R., Schmitt, G.: Backcasting and a new way of command in computational design. In: CAADence Archit, Budapest, pp. 15–25 (2016)

    Google Scholar 

  3. Radford, A., Gero, J.S.: Design by Optimization in Architecture, Building and Construction. Van Nostrand Reinhold, New York, Wokingham (1988)

    Google Scholar 

  4. Cagan, J., Campbell, M.I., Finger, S., Tomiyama, T.: A framework for computational design synthesis: model and applications. J. Comput. Inf. Sci. Eng. 5, 171–181 (2005). doi:10.1115/1.2013289

    Article  Google Scholar 

  5. Weber, B., Müller, P., Wonka, P., Gross, M.: Interactive geometric simulation of 4D cities. In: Eurographics, pp. 481–492 (2009)

    Google Scholar 

  6. Parish, Y., Müller, P.: Procedural modeling of cities. SIGGRAPH, pp. 301–308. ACM, Los Angeles, CA (2001)

    Google Scholar 

  7. Chen, G., Esch, G., Wonka, P., et al.: Interactive procedural street modeling. ACM Trans. Graph. 27, 10 (2008). doi:10.1145/1360612.1360702

    Google Scholar 

  8. Müller, P., Wonka, P., Haegler, S., et al.: Procedural modeling of buildings. In: (TOG) ACMT on G (ed) ACM SIGGRAPH, pp. 614–623. ACM Press, Boston (2006)

    Google Scholar 

  9. Mitchell, J., Steadman, P., Liggett, R.S.: Synthesis and optimization of small rectangular floor plans. Environ. Plan. B Plan. Des. 3, 37–70 (1976)

    Article  Google Scholar 

  10. Stiny, G., Mitchell, J.: The palladian grammar. Environ. Plan. B Plan. Des. 5, 5–18 (1978)

    Article  Google Scholar 

  11. Duarte, J.P.: A discursive grammar for customizing mass housing: the case of Siza’s houses at Malagueira. Autom. Constr. 14, 265–275 (2005). doi:10.1016/j.autcon.2004.07.013

    Article  Google Scholar 

  12. Duarte, J.P., de Rocha, J.M., Soares, G.D.: Unveiling the structure of the Marrakech Medina: A shape grammar and an interpreter for generating urban form. Artif. Intell. Eng. Des. Anal. Manuf. 21, 317–349 (2007)

    Article  Google Scholar 

  13. Doulgerakis, A.: Genetic Programming + Unfolding Embryology in Automated Layout Planning. University College London (2007)

    Google Scholar 

  14. O’Neill, M., McDermott, J., Swafford, J.M., et al.: Evolutionary design using grammatical evolution and shape grammars: designing a shelter. Int. J. Des. Eng. 3, 4–24 (2010)

    Google Scholar 

  15. Braach, M.: Programmieren statt Zeichnen: Kaisersrot. archithese (2002)

    Google Scholar 

  16. Braach, M.: Solutions you cannot draw. Archit. Des. 84, 46–53 (2014). doi:10.1002/ad.1807

    Google Scholar 

  17. Coates, P., Derix, C.: The deep structure of the picturesque. Archit. Des. 84, 32–37 (2014). doi:10.1002/ad.1805

    Google Scholar 

  18. Koenig, R.: CPlan: an open source library for computational analysis and synthesis. In: Martens, B., Wurzer, G.T.G., et al. (eds.) Real Time—Proceedings of the 33rd eCAADe Conference on Vienna University of Technology, Vienna, pp. 245–250 (2015)

    Google Scholar 

  19. Koenig, R.: CPlan Group (2015). http://cplan-group.net/. Accessed 28 May 2015

  20. Koenig, R., Treyer, L., Schmitt, G.: Graphical smalltalk with my optimization system for urban planning tasks. In: Stouffs, R., Sariyildiz, S. (eds.) Proceedings of the 31st eCAADe Conference—vol. 2, Delft, Netherlands, pp. 195–203 (2013)

    Google Scholar 

  21. Knecht, K., Koenig, R.: Generating floor plan layouts with k-d trees and evolutionary algorithms. In: GA2010—13th Generative Art Conference (2010)

    Google Scholar 

  22. Koenig, R., Knecht, K.: Comparing two evolutionary algorithm based methods for layout generation: dense packing versus subdivision. Artif. Intell. Eng. Des. Anal. Manuf. 28, 285–299 (2014). doi:10.1017/S0890060414000237

    Article  Google Scholar 

  23. Miao, Y., Koenig, R., Bus, P., et al.: Empowering urban design prototyping: a case study in Cape Town with interactive computational synthesis methods. In: Janssen, P., Loh, P., Atomic, A., Schnabel, M.A. (eds.) Protoc. Flows Glitches, Proceedings of the 22nd International Conference on Association Computers in Architecture Design and Research in Asia, Hong Kong, pp. 407–416 (2017)

    Google Scholar 

  24. Knecht, K., Koenig, R.: Automatische Grundstücksumlegung mithilfe von Unterteilungsalgorithmen und typenbasierte Generierung von Stadtstrukturen. Bauhaus-Universität Weimar, Weimar (2012)

    Google Scholar 

  25. Hansen, D.L., Shneiderman, B., Smith, M.A.: Analyzing Social Media Networks with NodeXL: Insights from a Connected World. Morgan Kaufmann, Burlington (2011)

    Google Scholar 

  26. Turner, A.: From axial to road-centre lines: a new representation for space syntax and a new model of route choice for transport network analysis. Environ. Plan. B Plan. Des. 34, 539–555 (2007)

    Article  Google Scholar 

  27. Fuchkina, E.: Pedestrian Movement Graph Analysis. Weimar (2016)

    Google Scholar 

  28. Schneider, S., Koenig, R.: Exploring the generative potential of isovist fields: the evolutionary generation of urban layouts based on isovist field properties. In: 30th International Conference on Education Research in Computer Aided Architectural Design in Europe, Prague, pp. 355–363 (2012)

    Google Scholar 

  29. König, R., Schmitt, G., Standfest, M.: Cognitive computing for urban design. Virtual real plan. Urban Des. Perspect. Pract. Appl. (2017)

    Google Scholar 

  30. Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1969)

    Google Scholar 

  31. Koenig, R.: Urban design synthesis for building layouts urban design synthesis for building layouts based on evolutionary many-criteria optimization. Int. J. Archit. Comput. 13, 257–270 (2015). doi:10.1260/1478-0771.13.3-4.257

    Article  Google Scholar 

  32. Bielik, M., Schneider, S., Koenig, R.: Parametric urban patterns: exploring and integrating graph-based spatial properties in parametric urban modelling. In: eCAADe 2012 (2012)

    Google Scholar 

  33. URA: Master Plan Greater Southern Waterfront (2014). https://www.ura.gov.sg/uol/master-plan/View-Master-Plan/master-plan-2014/master-plan/Regional-highlights/central-area/central-area/Greater-southern-waterfront.aspx. Accessed 15 Feb 2017

Download references

Acknowledgement

The research presented in this paper was partially conducted at the Future Cities Laboratory at the Singapore-ETH Centre, which was established collaboratively between ETH Zurich and Singapore’s National Research Foundation (FI 370074016) under its Campus for Research Excellence and Technological Enterprise program. Some methods presented in the paper were developed as part of the research project ESUM: Analyzing trade-offs between the energy and social performance of urban morphologies funded by the German Research Foundation (DFG) and the Swiss National Science Foundation (SNF, project number 100013L_149552).

There is a demo video for the generative process illustrated in Fig. 16 at https://vimeo.com/191807352 and https://vimeo.com/212540621. The process for generating the urban fabrics shown in Figs. 11, 12, 13 and 14 is shown in this video: https://www.youtube.com/watch?v=ELUKfsx89og&feature=youtu.be

The Rhino3D/Grasshopper components can be downloaded from the website of the Computational Planning Group: http://cplan-group.net/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Koenig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Koenig, R., Miao, Y., Knecht, K., Buš, P., Mei-Chih, C. (2017). Interactive Urban Synthesis. In: Çağdaş, G., Özkar, M., Gül, L., Gürer, E. (eds) Computer-Aided Architectural Design. Future Trajectories. CAADFutures 2017. Communications in Computer and Information Science, vol 724. Springer, Singapore. https://doi.org/10.1007/978-981-10-5197-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5197-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5196-8

  • Online ISBN: 978-981-10-5197-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics