Skip to main content

Strategies for Tackling Drug Resistance in Tuberculosis

  • Chapter
  • First Online:
Drug Design: Principles and Applications

Abstract

Tuberculosis still represents a serious threat to mankind, although drugs exist for more than 50 years to cure the disease. Indeed, TB killed 1.8 million people last year, ranking first as the most fatal infectious disease. This alarming situation results not only from coinfection with HIV but also from the emergence and the continuous evolution of drug-resistant strains of Mycobacterium tuberculosis: there are cases where no available drugs are able to cure the disease. A review of the drugs currently used, as well as those being developed, is proposed. Some of the strategies pursued for tackling drug resistance are also presented, illustrated with examples issued from the latest literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2016) Global tuberculosis report—2016. WHO Library

    Google Scholar 

  2. Delogu G, Sali M, Fadda G (2013) The biology of Mycobacterium tuberculosis infection. Mediterr J Hematol Infect Dis 5:e2013070. doi:10.4084/MJHID.2013.070

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dheda K, Barry C, Maartens G (2016) Tuberculosis. Lancet 387:1211–1226. doi:10.1016/S0140-6736(15)00151-8

    Article  PubMed  Google Scholar 

  4. Velayati A, Masjedi M, Farnia P et al (2009) Emergence of new forms of totally drug-resistant tuberculosis bacilli super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest 136:420–425. doi:10.1378/chest.08-2427

    Article  PubMed  Google Scholar 

  5. Velayati AA, Farnia P, Masjedi MR et al (2009) Totally drug-resistant tuberculosis strains: evidence of adaptation at the cellular level. Eur Respir J 34:1202–1203. doi:10.1183/09031936.00081909

    Article  CAS  PubMed  Google Scholar 

  6. Cegielski P, Nunn P, Kurbatova E et al (2012) Challenges and controversies in defining totally drug-resistant tuberculosis. Emerg Infect Dis 18:e2–e2. doi:10.3201/eid1811.120526

    Article  PubMed  PubMed Central  Google Scholar 

  7. Velayati A, Farnia P, Masjedi M (2013) Totally drug-resistant tuberculosis (TDR-TB): a debate on global health communities. Int J Mycobacteriol 2:71–72. doi:10.1016/j.ijmyco.2013.04.005

    Article  PubMed  Google Scholar 

  8. TBdrugs 1.0—Database of drugs for tuberculosis (version 1.0). http://bmi.icmr.org.in/tbdrugs/ or http://bic.icmr.org.in/tbdrugs/. Accessed 24 Mar 2017

  9. World Health Organization (2016) Treatment guidelines for drug-resistant tuberculosis—2016 update. WHO Library

    Google Scholar 

  10. Andries K, Verhasselt P, Guillemont J et al (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227. doi:10.1126/science.1106753

    Article  CAS  PubMed  Google Scholar 

  11. Preiss L, Langer J, Yildiz Ö et al (2015) Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci Adv 1:e1500106. doi:10.1126/sciadv.1500106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zheng J, Rubin E, Bifani P et al (2013) Para-aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J Biol Chem 288:23447–23456. doi:10.1074/jbc.M113.475798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Islam M, Hameed HM, Mugweru J et al (2017) Drug resistance mechanisms and novel drug targets for tuberculosis therapy. J Genet Genomics 44:21–37. doi:10.1016/j.jgg.2016.10.002

    Article  PubMed  Google Scholar 

  14. Migliori G, Iaco DG, Besozzi G et al (2007) First tuberculosis cases in Italy resistant to all tested drugs. Euro surveillance: European communicable disease bulletin 12:E070517.1.

    Google Scholar 

  15. Udwadia ZF, Amale RA, Ajbani KK, Rodrigues C (2012) Totally drug-resistant tuberculosis in India. Clin Infect Dis 54:579–581. doi:10.1093/cid/cir889

    Article  PubMed  Google Scholar 

  16. Velayati A, Farnia P, Masjedi M (2012) Pili in totally drug resistant Mycobacterium tuberculosis (TDR-TB). Int J Mycobacteriol 1:57–58. doi:10.1016/j.ijmyco.2012.04.002

    Article  PubMed  Google Scholar 

  17. Silva P, Palomino J (2011) Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 66:1417–1430. doi:10.1093/jac/dkr173

    Article  CAS  Google Scholar 

  18. Bernardes-Génisson V, Deraeve C, Chollet A et al (2013) Isoniazid: an update on the multiple mechanisms for a singular action. Curr Med Chem 20:4370–4385. doi:10.2174/15672050113109990203

    Article  PubMed  CAS  Google Scholar 

  19. Wang F, Langley R, Gulten G et al (2007) Mechanism of thioamide drug action against tuberculosis and leprosy. J Exp Med 204:73–78. doi:10.1084/jem.20062100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grzegorzewicz AE, Eynard N, Quémard A et al (2015) Covalent modification of the FAS-II dehydratase by isoxyl and thiacetazone. ACS Infect Dis 1:91–97. doi:10.1021/id500032q

    Article  CAS  PubMed  Google Scholar 

  21. Mathys V, Wintjens R, Lefevre P et al (2009) Molecular genetics of para-aminosalicylic acid resistance in clinical isolates and spontaneous mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother 53:2100–2109. doi:10.1128/AAC.01197-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Via LE, Savic R, Weiner DM et al (2015) Host-mediated bioactivation of pyrazinamide: implications for efficacy, resistance, and therapeutic alternatives. ACS Infect Dis 1:203–214. doi:10.1021/id500028m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramirez-Busby S, Valafar F (2015) Systematic review of mutations in pyrazinamidase associated with pyrazinamide resistance in Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother 59:5267–5277. doi:10.1128/AAC.00204-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zimhony O, Cox JS, Welch JT et al (2000) Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat Med 6:1043–1047. doi:10.1038/79558

    Article  CAS  PubMed  Google Scholar 

  25. Kim H, Shibayama K, Rimbara E, Mori S (2014) Biochemical characterization of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis H37Rv and inhibition of its activity by pyrazinamide. PLoS One 9:e100062. doi:10.1371/journal.pone.0100062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhang Y, Wade MM, Scorpio A et al (2003) Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J Antimicrob Chemother 52:790–795. doi:10.1093/jac/dkg446

    Article  PubMed  CAS  Google Scholar 

  27. Ali A, Hasan R, Jabeen K et al (2011) Characterization of mutations conferring extensive drug resistance to Mycobacterium tuberculosis isolates in Pakistan. Antimicrob Agents Chemother 55:5654–5659. doi:10.1128/AAC.05101-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosales-Klintz S, Jureen P, Zalutskayae A et al (2012) Drug resistance-related mutations in multidrug-resistant Mycobacterium tuberculosis isolates from diverse geographical regions. Int J Mycobacteriol 1:124–130. doi:10.1016/j.ijmyco.2012.08.001

    Article  PubMed  Google Scholar 

  29. Thakur C, Kumar V, Gupta A (2015) Detecting mutation pattern of drug-resistant Mycobacterium tuberculosis isolates in Himachal Pradesh using GenoType® MTBDRplus assay. Indian J Med Microbiol 33:547–553. doi:10.4103/0255-0857.167336

    Article  CAS  PubMed  Google Scholar 

  30. Vilchèze C, Jacobs WR (2014) Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: genes, mutations, and causalities. Microbiol Spectr 2. doi:10.1128/microbiolspec.MGM2-0014-2013

  31. Scorpio A, Zhang Y (1996) Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2:662–667

    Article  CAS  PubMed  Google Scholar 

  32. Njire M, Tan Y, Mugweru J et al (2016) Pyrazinamide resistance in Mycobacterium tuberculosis: review and update. Adv Med Sci 61:63–71. doi:10.1016/j.advms.2015.09.007

    Article  PubMed  Google Scholar 

  33. Zhang S, Chen J, Shi W et al (2013) Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg Microbes Infect 2:e34. doi:10.1038/emi.2013.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rengarajan J, Sassetti CM, Naroditskaya V et al (2004) The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol Microbiol 53:275–282. doi:10.1111/j.1365-2958.2004.04120.x

    Article  CAS  PubMed  Google Scholar 

  35. Cheng Y-SS, Sacchettini JC (2016) Structural insights into Mycobacterium tuberculosis Rv2671 protein as a dihydrofolate reductase functional analogue contributing to para-aminosalicylic acid resistance. Biochemistry 55:1107–1119. doi:10.1021/acs.biochem.5b00993

    Article  CAS  PubMed  Google Scholar 

  36. Goldstein BP (2014) Resistance to rifampicin: a review. J Antibiot 67:625–630. doi:10.1038/ja.2014.107

    Article  CAS  PubMed  Google Scholar 

  37. Maruri F, Sterling TR, Kaiga AW et al (2012) A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J Antimicrob Chemother 67:819–831. doi:10.1093/jac/dkr566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Telenti A, Philipp WJ, Sreevatsan S et al (1997) The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 3:567–570

    Article  CAS  PubMed  Google Scholar 

  39. Cooksey RC, Morlock GP, McQueen A et al (1996) Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from patients in New York City. Antimicrob Agents Chemother 40:1186–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Villellas C, Coeck N, Meehan C et al (2016) Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline. J Antimicrob Chemother 72:684–690. doi:10.1093/jac/dkw502

    PubMed Central  Google Scholar 

  41. TBAlliance (2016) Phase 1 Clinical Trial of TB Drug Candidate TBA-354 discontinued. https://www.tballiance.org/news/phase-1-clinical-trial-tb-drug-candidate-tba-354-discontinued. Accessed 24 Mar 2017

  42. NewTBDrugs (2016) AZD5847. http://www.newtbdrugs.org/pipeline/compound/azd5847. Accessed 24 Mar 2017

  43. ClinicalTrials (1993) A service of the U.S. National Institute of Health. https://www.clinicaltrials.gov/beta. Accessed 24 Mar 2017

  44. NewTBDrugs (2016) Working Group on new TB drugs—StopTBPartnership. http://www.newtbdrugs.org. Accessed 24 Mar 2017

  45. TBAlliance. https://www.tballiance.org/portfolio. Accessed 24 Mar 2017

  46. Manjunatha U, Boshoff HIM, Barry CE (2009) The mechanism of action of PA-824. Novel insights from transcriptional profiling. Commun Integr Biol 2:215–218. doi:10.1126/science.1164571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pethe K, Bifani P, Jang J et al (2013) Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med 19:1157–1160. doi:10.1038/nm.3262

    Article  CAS  PubMed  Google Scholar 

  48. Makarov V, Lechartier B, Zhang M et al (2014) Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol Med 6:372–383. doi:10.1002/emmm.201303575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Clayden P et al (2016) Pipeline report—HIV & TB, 2016. HIV i-Base and Treatment Action Group

    Google Scholar 

  50. Bush K, Bradford PA (2016) β-lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a025247

  51. DiMasi J, Grabowski H, Hansen R (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33. doi:10.1016/j.jhealeco.2016.01.012

    Article  PubMed  Google Scholar 

  52. Koul A, Dendouga N, Vergauwen K et al (2007) Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol 3:323–324. doi:10.1038/nchembio884

    Article  CAS  PubMed  Google Scholar 

  53. Bloemberg GV, Keller PM, Stucki D et al (2015) Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med 373:1986–1988. doi:10.1056/NEJMc1505196

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lynch J, Szumowski J (2015) Profile of delamanid for the treatment of multidrug-resistant tuberculosis. Drug Des Devel Ther 9:677–682. doi:10.2147/DDDT.S60923

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–344. doi:10.1038/31159

    Article  CAS  PubMed  Google Scholar 

  56. Koul A, Arnoult E, Lounis N et al (2011) The challenge of new drug discovery for tuberculosis. Nature 469:483–490. doi:10.1038/nature09657

    Article  CAS  PubMed  Google Scholar 

  57. Lechartier B, Rybniker J, Zumla A, Cole S (2014) Tuberculosis drug discovery in the post-post-genomic era. EMBO Mol Med 6:158–168. doi:10.1002/emmm.201201772

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Payne D, Gwynn M, Holmes D, Pompliano D (2006) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40. doi:10.1038/nrd2201

    Article  PubMed  CAS  Google Scholar 

  59. Banerjee A, Dubnau E, Quémard A et al (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230

    Article  CAS  PubMed  Google Scholar 

  60. Chollet A, Mourey L, Lherbet C et al (2015) Crystal structure of the enoyl-ACP reductase of Mycobacterium tuberculosis (InhA) in the apo-form and in complex with the active metabolite of isoniazid pre-formed by a biomimetic approach. J Struct Biol 190:328–337. doi:10.1016/j.jsb.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  61. Dessen A, Quémard A, Blanchard JS et al (1995) Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267:1638–1641

    Article  CAS  PubMed  Google Scholar 

  62. Ballell-Pages L, Castro-Pichel J, Fernandez Menendez R et al. (2009) (pyrazol-3-yl)-1, 3, 4-thiadiazol-2-amine and (pyrazol-3-yl)-1, 3, 4-thiazol-2-amine compounds. Patent WO 2010/118852 A1

    Google Scholar 

  63. Shirude P, Madhavapeddi P, Naik M et al (2013) Methyl-thiazoles: a novel mode of inhibition with the potential to develop novel inhibitors targeting InhA in Mycobacterium tuberculosis. J Med Chem 56:8533–8542. doi:10.1021/jm4012033

    Article  CAS  PubMed  Google Scholar 

  64. Šink R, Sosič I, Živec M et al (2015) Design, synthesis, and evaluation of new thiadiazole-based direct inhibitors of enoyl acyl carrier protein reductase (InhA) for the treatment of tuberculosis. J Med Chem 58:613–624. doi:10.1021/jm501029r

    Article  PubMed  CAS  Google Scholar 

  65. Baulard A, Betts J, Engohang-Ndong J et al (2000) Activation of the pro-drug ethionamide is regulated in mycobacteria. J Biol Chem 275:28326–28331. doi:10.1074/jbc.M003744200

    CAS  PubMed  Google Scholar 

  66. Frénois F, Engohang-Ndong J, Locht C et al (2004) Structure of EthR in a ligand bound conformation reveals therapeutic perspectives against tuberculosis. Mol Cell 16:301–307. doi:10.1016/j.molcel.2004.09.020

    Article  PubMed  Google Scholar 

  67. Willand N, Dirié B, Carette X et al (2009) Synthetic EthR inhibitors boost antituberculous activity of ethionamide. Nat Med 15:537–544. doi:10.1038/nm.1950

    Article  CAS  PubMed  Google Scholar 

  68. Engohang-Ndong J (2012) Antimycobacterial drugs currently in phase II clinical trials and preclinical phase for tuberculosis treatment. Expert Opin Investig Drugs 21:1789–1800. doi:10.1517/13543784.2012.724397

    Article  CAS  PubMed  Google Scholar 

  69. Villemagne B, Crauste C, Flipo M et al (2012) Tuberculosis: the drug development pipeline at a glance. Eur J Med Chem 51:1–16. doi:10.1016/j.ejmech.2012.02.033

    Article  CAS  PubMed  Google Scholar 

  70. Lorenz M, Fink G (2002) Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 1:657–662. doi:10.1128/EC.1.5.657-662.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McKinney JD, Höner zu Bentrup K, Muñoz-Elías EJ et al (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738. doi:10.1038/35021074

    Article  CAS  PubMed  Google Scholar 

  72. Kondrashov F, Koonin E, Morgunov I et al (2006) Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation. Biol Direct 1:1–14. doi:10.1186/1745-6150-1-31

    Article  CAS  Google Scholar 

  73. Krátký M, Vinšová J, Novotná E et al (2013) Antibacterial activity of salicylanilide 4-(trifluoromethyl)-benzoates. Molecules 18:3674–3688. doi:10.3390/molecules18043674

    Article  PubMed  CAS  Google Scholar 

  74. Smith CV, Huang CC, Miczak A et al (2003) Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis. J Biol Chem 278:1735–1743. doi:10.1074/jbc.M209248200

    Article  CAS  PubMed  Google Scholar 

  75. Krieger IV, Freundlich JS, Gawandi VB et al (2012) Structure-guided discovery of phenyl-diketo acids as potent inhibitors of M. tuberculosis malate synthase. Chem Biol 19:1556–1567. doi:10.1016/j.chembiol.2012.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534

    Article  CAS  PubMed  Google Scholar 

  77. Erlanson DA, Fesik SW, Hubbard RE et al (2016) Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov 15:605–619. doi:10.1038/nrd.2016.109

    Article  CAS  PubMed  Google Scholar 

  78. Hung AW, Silvestre HL, Wen S et al (2009) Application of fragment growing and fragment linking to the discovery of inhibitors of Mycobacterium tuberculosis pantothenate synthetase. Angew Chem Int Ed Engl 48:8452–8456. doi:10.1002/anie.200903821

    Article  CAS  PubMed  Google Scholar 

  79. Mendes V, Blundell TL (2017) Targeting tuberculosis using structure-guided fragment-based drug design. Drug Discov Today 22:546–554. doi:10.1016/j.drudis.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  80. Ioerger TR, O’Malley T, Liao R et al (2013) Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis. PLoS One 8:e75245. doi:10.1371/journal.pone.0075245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gavalda S, Léger M, van der Rest B et al (2009) The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis. J Biol Chem 284:19255–19264. doi:10.1074/jbc.m109.006940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gavalda S, Bardou F, Laval F et al (2014) The polyketide synthase Pks13 catalyzes a novel mechanism of lipid transfer in mycobacteria. Chem Biol 21:1660–1669. doi:10.1016/j.chembiol.2014.10.011

    Article  CAS  PubMed  Google Scholar 

  83. Portevin D, De Sousa-D’Auria C, Montrozier H et al (2005) The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components. J Biol Chem 280:8862–8874

    Article  CAS  PubMed  Google Scholar 

  84. Serafini A, Boldrin F, Palù G, Manganelli R (2009) Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by iron and zinc. J Bacteriol 191:6340–6344. doi:10.1128/JB.00756-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Siegrist MS, Unnikrishnan M, McConnell MJ et al (2009) Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc Natl Acad Sci U S A 106:18792–18797. doi:10.1073/pnas.0900589106

    Article  PubMed  PubMed Central  Google Scholar 

  86. Matsumoto M, Hashizume H, Tomishige T et al (2006) OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med 3:e466. doi:10.1371/journal.pmed.0030466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Makarov V, Manina G, Mikusova K et al (2009) Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 324:801–804. doi:10.1126/science.1171583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Abel R, Mondal S, Masse C et al (2016) Accelerating drug discovery through tight integration of expert molecular design and predictive scoring. Curr Opin Struct Biol 43:38–44. doi:10.1016/j.sbi.2016.10.007

    Article  PubMed  CAS  Google Scholar 

  89. Renaud J-PP, Chung C-WW, Danielson UH et al (2016) Biophysics in drug discovery: impact, challenges and opportunities. Nat Rev Drug Discov 15:679–698. doi:10.1038/nrd.2016.123

    Article  CAS  PubMed  Google Scholar 

  90. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  PubMed  Google Scholar 

  91. Fink T, Reymond J-LL (2007) Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery. J Chem Inf Model 47:342–353. doi:10.1021/ci600423u

    Article  CAS  PubMed  Google Scholar 

  92. Kinch MS, Haynesworth A, Kinch SL, Hoyer D (2014) An overview of FDA-approved new molecular entities: 1827-2013. Drug Discov Today 19:1033–1039. doi:10.1016/j.drudis.2014.03.018

    Article  CAS  PubMed  Google Scholar 

  93. Huang R, Southall N, Wang Y et al (2011) The NCGC pharmaceutical collection: a comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci Transl Med 3:80ps16. doi:10.1126/scitranslmed.3001862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673–683. doi:10.1038/nrd1468

    Article  CAS  PubMed  Google Scholar 

  95. Ghofrani H, Osterloh I, Grimminger F (2006) Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov 5:689–702. doi:10.1038/nrd2030

    Article  CAS  PubMed  Google Scholar 

  96. Goldstein I, Lue TF, Padma-Nathan H et al (1998) Oral sildenafil in the treatment of erectile dysfunction. Sildenafil study group. N Engl J Med 338:1397–1404. doi:10.1056/NEJM199805143382001

    Article  CAS  PubMed  Google Scholar 

  97. Prasad S, Wilkinson J, Gatzoulis MA (2000) Sildenafil in primary pulmonary hypertension. N Engl J Med 343:1342. doi:10.1056/NEJM200011023431814

    Article  CAS  PubMed  Google Scholar 

  98. Kinnings SL, Xie L, Fung KH et al (2010) The Mycobacterium tuberculosis drugome and its polypharmacological implications. PLoS Comput Biol 6:e1000976. doi:10.1371/journal.pcbi.1000976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Gillespie SH (2016) The role of moxifloxacin in tuberculosis therapy. Eur Respir Rev 25:19–28. doi:10.1183/16000617.0085-2015

    Article  PubMed  Google Scholar 

  100. Tyagi S, Ammerman NC, Li S-YY et al (2015) Clofazimine shortens the duration of the first-line treatment regimen for experimental chemotherapy of tuberculosis. Proc Natl Acad Sci U S A 112:869–874. doi:10.1073/pnas.1416951112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sotgiu G, D’Ambrosio L, Centis R et al (2016) Carbapenems to treat multidrug and extensively drug-resistant tuberculosis: a systematic review. Int J Mol Sci 17:373. doi:10.3390/ijms17030373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Novac N (2013) Challenges and opportunities of drug repositioning. Trends Pharmacol Sci 34:267–272. doi:10.1016/j.tips.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  103. Oprea T, Bauman J, Bologa C et al (2011) Drug repurposing from an academic perspective. Drug Discov Today Ther Strateg 8:61–69. doi:10.1016/j.ddstr.2011.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  104. Protein Data Bank An information portal to biological macromolecular structures. http://www.rcsb.org/pdb/home/home.do. Accessed 24 Mar 2017

  105. Maeda K, Kosaka H, Okami Y, Umezawa H (1953) A new antibiotic, pyridomycin. J Antibiot 6:140

    CAS  PubMed  Google Scholar 

  106. Hartkoorn RC, Pojer F, Read JA et al (2014) Pyridomycin bridges the NADH- and substrate-binding pockets of the enoyl reductase InhA. Nat Chem Biol 10:96–98. doi:10.1038/nchembio.1405

    Article  CAS  PubMed  Google Scholar 

  107. Harvey A, Edrada-Ebel R, Quinn R (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111–129. doi:10.1038/nrd4510

    Article  CAS  PubMed  Google Scholar 

  108. Quan D, Nagalingam G, Payne R, Triccas J (2017) New tuberculosis drug leads from naturally occurring compounds. Int J Infect Dis 56:212–220. doi:10.1016/j.ijid.2016.12.024

    Article  CAS  PubMed  Google Scholar 

  109. Singh V, Mizrahi V (2016) Identification and validation of novel drug targets in Mycobacterium tuberculosis. Drug Discov Today 22:503–509. doi:10.1016/j.drudis.2016.09.010

    Article  PubMed  CAS  Google Scholar 

  110. Mdluli K, Kaneko T, Upton A (2014) Tuberculosis drug discovery and emerging targets. Ann N Y Acad Sci 1323:56–75. doi:10.1111/nyas.12459

    Article  CAS  PubMed  Google Scholar 

  111. Marrakchi H, Lanéelle M-AA, Daffé M (2014) Mycolic acids: structures, biosynthesis, and beyond. Chem Biol 21:67–85. doi:10.1016/j.chembiol.2013.11.011

    Article  CAS  PubMed  Google Scholar 

  112. Portevin D, De Sousa-D’Auria C, Houssin C et al (2004) A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci U S A 101:314–319. doi:10.1073/pnas.0305439101

    Article  CAS  PubMed  Google Scholar 

  113. Mdluli K, Slayden RA, Zhu Y et al (1998) Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science 280:1607–1610

    Article  CAS  PubMed  Google Scholar 

  114. Banerjee DI, Gohil TP (2016) Interaction of antimicrobial peptide with mycolyl transferase in Mycobacterium tuberculosis. Int J Mycobacteriol 5:83–88. doi:10.1016/j.ijmyco.2015.07.002

    Article  PubMed  Google Scholar 

  115. North J, Jackson M, Lee R (2014) New approaches to target the mycolic acid biosynthesis pathway for the development of tuberculosis therapeutics. Curr Pharm Des 20:4357–4378. doi:10.2174/1381612819666131118203641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vaubourgeix J, Bardou F, Boissier F et al (2009) S-adenosyl-N-decyl-aminoethyl, a potent bisubstrate inhibitor of Mycobacterium tuberculosis mycolic acid methyltransferases. J Biol Chem 284:19321–19330. doi:10.1074/jbc.m809599200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Galandrin S, Guillet V, Rane RS et al (2013) Assay development for identifying inhibitors of the mycobacterial FadD32 activity. J Biomol Screen 18:576–587. doi:10.1177/1087057112474691

    Article  PubMed  CAS  Google Scholar 

  118. Mahapatra S, Scherman H, Brennan PJ, Crick DC (2005) N Glycolylation of the nucleotide precursors of peptidoglycan biosynthesis of Mycobacterium spp. is altered by drug treatment. J Bacteriol 187:2341–2347. doi:10.1128/JB.187.7.2341-2347.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mahapatra S, Yagi T, Belisle JT et al (2005) Mycobacterial lipid II is composed of a complex mixture of modified muramyl and peptide moieties linked to decaprenyl phosphate. J Bacteriol 187:2747–2757. doi:10.1128/JB.187.8.2747-2757.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kumar V, Saravanan P, Arvind A, Mohan CG (2011) Identification of hotspot regions of MurB oxidoreductase enzyme using homology modeling, molecular dynamics and molecular docking techniques. J Mol Model 17:939–953. doi:10.1007/s00894-010-0788-3

    Article  CAS  PubMed  Google Scholar 

  121. Tomasić T, Zidar N, Kovac A et al (2010) 5-Benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial Mur ligases. ChemMedChem 5:286–295. doi:10.1002/cmdc.200900449

    Article  PubMed  CAS  Google Scholar 

  122. Morayya S, Awasthy D, Yadav R et al (2015) Revisiting the essentiality of glutamate racemase in Mycobacterium tuberculosis. Gene 555:269–276. doi:10.1016/j.gene.2014.11.017

    Article  CAS  PubMed  Google Scholar 

  123. Johnson EE, Wessling-Resnick M (2012) Iron metabolism and the innate immune response to infection. Microbes Infect 14:207–216. doi:10.1016/j.micinf.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  124. Rodriguez GM (2006) Control of iron metabolism in Mycobacterium tuberculosis. Trends Microbiol 14:320–327. doi:10.1016/j.tim.2006.05.006

    Article  CAS  PubMed  Google Scholar 

  125. Neres J, Labello NP, Somu RV et al (2008) Inhibition of siderophore biosynthesis in Mycobacterium tuberculosis with nucleoside bisubstrate analogues: structure-activity relationships of the nucleobase domain of 5′-O-[N-(salicyl)sulfamoyl]adenosine. J Med Chem 51:5349–5370. doi:10.1021/jm800567v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Domenech P, Reed MB, Barry CE (2005) Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect Immun 73:3492–3501. doi:10.1128/IAI.73.6.3492-3501.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Varela C, Rittmann D, Singh A et al (2012) MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria. Chem Biol 19:498–506. doi:10.1016/j.chembiol.2012.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Khare G, Nangpal P, Tyagi AK (2017) Differential roles of iron storage proteins in maintaining the iron homeostasis in Mycobacterium tuberculosis. PLoS One 12:e0169545. doi:10.1371/journal.pone.0169545

    Article  PubMed  PubMed Central  Google Scholar 

  129. Reddy PV, Puri RV, Khera A, Tyagi AK (2012) Iron storage proteins are essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-1 macrophages and the guinea pig model of infection. J Bacteriol 194:567–575. doi:10.1128/JB.05553-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pandey R, Rodriguez GM (2014) IdeR is required for iron homeostasis and virulence in Mycobacterium tuberculosis. Mol Microbiol 91:98–109. doi:10.1111/mmi.12441

    Article  CAS  PubMed  Google Scholar 

  131. Marrero J, Rhee KY, Schnappinger D et al (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci U S A 107:9819–9824. doi:10.1073/pnas.1000715107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Haagsma AC, Abdillahi-Ibrahim R, Wagner MJ et al (2009) Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob Agents Chemother 53:1290–1292. doi:10.1128/AAC.01393-08

    Article  CAS  PubMed  Google Scholar 

  133. Abuhammad A (2017) Cholesterol metabolism: a potential therapeutic target in mycobacteria. Br J Pharmacol. doi:10.1111/bph.13694

  134. Brötz-Oesterhelt H, Beyer D, Kroll H-PP et al (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11:1082–1087. doi:10.1038/nm1306

    Article  PubMed  CAS  Google Scholar 

  135. Ollinger J, O’Malley T, Kesicki EA et al (2012) Validation of the essential ClpP protease in Mycobacterium tuberculosis as a novel drug target. J Bacteriol 194:663–668. doi:10.1128/JB.06142-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Conlon BP, Nakayasu ES, Fleck LE et al (2013) Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503:365–370. doi:10.1038/nature12790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cheng L, Naumann TA, Horswill AR et al (2007) Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease. Protein Sci 16:1535–1542. doi:10.1110/ps.072933007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. World Health Organization (2016) Pipeline Report—HIV &TB, 2016. WHO Library

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Maveyraud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Maveyraud, L. (2017). Strategies for Tackling Drug Resistance in Tuberculosis. In: Grover, A. (eds) Drug Design: Principles and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-5187-6_7

Download citation

Publish with us

Policies and ethics