Skip to main content

History and Perspective on Indoor Air Quality Research

  • Living reference work entry
  • First Online:
Handbook of Indoor Air Quality

Abstract

Modern indoor air science started in the 1970s. The reasons for separating the modern and old eras are: (1) building energy conservation became important due to the oil embargo in the Middle East in 1973 that had a great impact on building design and operation and in turn indoor air quality; (2) ambient air pollution became a topic of concern in many developed countries; (3) “modern diseases” were found to be associated with “modern exposure” during this period; (4) many new computational and measurement technologies such as computational fluid dynamics (CFD) and gas chromatography-mass spectrometry (GC-MS), respectively, occurred with the development of computer and the related technologies; and (5) a series of international societies and conferences related to indoor air science with worldwide impact were launched and recognized beginning in the 1970s. Modern indoor air science has been driven by two forces. One driver is the demands to fix important indoor air problems arising from a broad variety of pollutants: radon, asbestos, environmental tobacco smoke, particles (PM10, PM2.5, ultrafine particles), formaldehyde, volatile organic compounds, semi-volatile organic compounds, house dust mites, mold, bacteria, and associated health effects, e.g., sick building syndrome symptoms, asthma and allergies, Legionnaires’ disease, lung cancer, and airborne infections such as SARS and nowadays COVID-2019. The second driver is the new technologies such as CFD, big data analysis, advanced chemical analytical capability, sensing, control, and human biomarker analysis, which have contributed greatly to modern indoor air science. By understanding the influences of these two drivers on the development of indoor air science over the past decades, we can also perceive its future. In this first chapter, we summarize the history of indoor air science and outline some major challenges for the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alzona J, Cohen BL, Rudolph H et al (1979) Indoor-outdoor relationships for airborne particulate matter of outdoor origin. Atmos Environ 13:55–60

    Article  CAS  Google Scholar 

  • Andersen I, Lundqvist GR, Mølhave L (1975) Indoor air pollution due to chipboard used as construction material. Atmos Environ 9:1121–1127

    Article  CAS  Google Scholar 

  • ASC (2016) Assessment standard for healthy building (ASC/T 02-2016). Architecture Society of China

    Google Scholar 

  • Azuma K, Jinno H, Tanaka-Kagawa T, Sakai S (2020) Risk assessment concepts and approaches for indoor air chemicals in Japan. Int J Hyg Environ Health 225:113470

    Article  CAS  Google Scholar 

  • Bell ML, Davis DL, Fletcher T (2004) A retrospective assessment of mortality from the London smog episode of 1952: the role of influenza and pollution. Environ Health Perspect 112:6–8

    Article  Google Scholar 

  • Biersteker K, de Graaf H, Nass CAG (1965) Indoor air pollution in Rotterdam homes. Air Water Pollut 9:343–350

    CAS  Google Scholar 

  • BIFMA International (2011) ANSI/BIFMA M7.1, Standard Test Method for Determining VOC Emissions from Office Furniture Systems, Components and Seating

    Google Scholar 

  • Billings JS (1889) The principles of ventilation and heating and their practical application, 2nd edn. Engineering and Building Record, New York

    Google Scholar 

  • Blue Angel (2002) RAL-UZ 38. Low-emission wood products and wood-based products. German Institute for Quality Assurance and Certification

    Google Scholar 

  • Bluyssen PM, De Olivera FE, Groes L et al (1996) European indoor air quality audit project in 56 office buildings. Indoor Air 6:221–238

    Article  CAS  Google Scholar 

  • Bonjour S, Adair-Rohani H, Wolf J et al (2013) Solid fuel use for household cooking: Country and regional estimates for 1980–2010. Environ Health Perspect 121:784–790

    Article  Google Scholar 

  • Bornehag CG, Blomquist G, Gyntelberg F et al (2001) Dampness in buildings and health. Indoor Air 11:72–86

    Article  CAS  Google Scholar 

  • Boulanger G, Bayeux T, Mandin C, Kirchner S et al (2017) Socio-economic costs of indoor air pollution: a tentative estimation for some pollutants of health interest in France. Environ Int 104:14–24

    Article  CAS  Google Scholar 

  • Brightman HS, Milton DK, Wypij D, Burge HA, Spengler JD (2008) Evaluating building-related symptoms using the US EPA BASE study results. Indoor Air 18:335–345

    Article  CAS  Google Scholar 

  • Carrer P, De Oliveira FE, Santos H et al (2018) On the development of health-based ventilation guidelines: principles and framework. Int J Environ Res Public Health 15:1360

    Article  CAS  Google Scholar 

  • Carson R (1962) Silent Spring. Houghton Mifflin, Boston

    Google Scholar 

  • Chen QY, Zhai ZQ, You XY, Zhang TF (2017) Inverse design methods for the built environment. Swales & Willis Ltd, Exeter, Devon

    Book  Google Scholar 

  • China CDC, Indoor Air Quality Standards (GB/T18883-2002)

    Google Scholar 

  • Clausen P, Hansen V, Gunnarsen L, Afshari A, Wolkoff P (2004) Emission of di-2-ethylhexyl phthalate from PVC flooring into air and uptake in dust: emission and sorption experiments in FLEC and CLIMPAQ. Environ Sci Technol 38(9):2531–2537

    Article  CAS  Google Scholar 

  • Committee for Health-related Evaluation of Building Products (2018) AgBB, Evaluation procedure for VOC emissions from building products. https://www.umweltbundesamt.de/en/document/ agbb-evaluation-scheme-2018-1. Accessed 20 Apr 2021

  • Dockery DW, Pope CA, Xu X et al (1993) An association between air pollutions and mortality in six U.S. cities. N Engl J Med 329(24):1753–1759

    Article  CAS  Google Scholar 

  • Duan X, Zhao X, Wang B, Chen Y, Cao S (2013) Exposure factors handbook of Chinese population (adults). China Environmental Science Press, Beijing, China.

    Google Scholar 

  • European Commission (EC) (1989) Directive 89/106/EEC. OJ L40/12. EC Commission, Brussels. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31989L0106

  • European Commission (EC) (1993) Council Directive 93/68/EEC of 22 July 1993. https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A31993L0068

  • European Commission (EC) (2011) Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC Text with EEA relevance. https://eur-lex.europa.eu/eli/reg/2011/305/oj

  • Fang L, Clausen G, Fanger PO (1998) Impact of temperature and humidity on the perception of indoor air quality. Indoor Air 8(2):80–90

    Article  Google Scholar 

  • Fanger PO (1988a) Introduction of the OLF and the DECIPOL units to quantify air-pollution perceived by humans indoors and outdoors. Energy Build 12(1):1–6

    Article  Google Scholar 

  • Fanger PO (1988b) Olf and decipol, new units for perceived quality. Build Serv Eng Res Technol 9(4):155–157

    Article  Google Scholar 

  • Fanger PO, Valbjørn O (1978) Indoor climate: effects on human comfort, performance and health in residential, commercial and light-industry buildings. In: Proceedings of the first international indoor climate symposium. Danish Building Research Institute, Copenhagen

    Google Scholar 

  • Finnegan MJ, Pickering CA, Burge PS (1984) The sick building syndrome: prevalence studies. Br Med J (Clinical Research Edition) 289:1573–1575

    Google Scholar 

  • Fitting JW (2015) From breathing to respiration. Respiration 89(1):82–87

    Article  Google Scholar 

  • Fromme H, Debiak M, Sagunski H et al (2019) The German approach to regulate indoor air contaminants. Int J Hyg Environ Health 222:347–354

    Article  CAS  Google Scholar 

  • Grimsrud DT (2011) Indoor Air: the first 10 years. Indoor Air 21:179–181

    Article  CAS  Google Scholar 

  • Hänninen O, Knol A (2011) European perspectives on environmental burden of disease: estimates for nine stressors in xix Countries. Available: http://www.thl.fi/thl-client/pdfs/b75f6999-e7c4-4550-a939-3bccb19e41c1. Accessed 7 Mar 2013

  • Hänninen O, Alm S, Katsouyanni K et al (2004) The EXPOLIS study: implications for exposure research and environmental policy in Europe. J Expo Anal Environ Epidemiol 14:440–456

    Article  CAS  Google Scholar 

  • Hänninen O, Sorjamaa R, Lipponen P et al (2013) Aerosol-based modelling of infiltration of ambient PM2.5 and evaluation against population-based measurements in homes in Helsinki, Finland. J Aerosol Sci 66:111–122

    Article  CAS  Google Scholar 

  • Hänninen O, Knol A, Jantunen M et al (2014) Environmental burden of disease in Europe: assessing nine risk factors in six countries. Environ Health Perspect 122(5):439–446

    Article  Google Scholar 

  • Hänninen O, Mandin C, Liu W, Liu N, Zhao Z, Zhang Y (2022) Disease burden of indoor air pollution, Handbook of Indoor Air Quality, SpringerNature. https://doi.org/10.1007/978-981-10-5155-5_48-1.

  • He XZ, Chen W, Liu ZY, Chapman RS (1991) An epidemiological study of lung cancer in Xuan Wei county, China: current progress. Case-control study on lung cancer and cooking fuel. Environ Health Perspect 94:9–13

    CAS  Google Scholar 

  • Hermance HW, Russell CA, Bauer EJ, Egan TF, Wadlow HV (1971) Relation of airborne nitrate to telephone equipment damage. Environ Sci Technol 5(9):781–785

    Article  Google Scholar 

  • Hopke PK, Jensen B, Li CS, Montassier N, Wasiolek P, Cavallo AJ, Gatsby K, Socolow RH, James AC (1995) Assessment of the exposure to and dose from radon decay products in normally occupied homes. Environ Sci Technol 29:1359–1364

    Article  CAS  Google Scholar 

  • International WELL Building Institute (2014) The WELL Building Standard® Version 1.0 (WELL v1.0). The WELL Building Standard® is a registered trademark of Delos Living LLC. Delos Living LLC 22 Little West 12th Street, 4th Floor New York, NY 10014

    Google Scholar 

  • Janssen JE (1999) The history of ventilation and temperature control. ASHRAE J 41:47–52

    Google Scholar 

  • Jantunen M, Hänninen O, Katsouyanni K, Knöppel H, Künzli N, Lebret E, Maroni M, Saarela K, Srám R, Zmirou D (1998) Air pollution exposure in European cities: the EXPOLIS-study. J Expo Anal Environ Epidemiol 8(4):495–518

    CAS  Google Scholar 

  • Johnsen CR, Heinig JH, Schmidt K et al (1991) A study of human reactions to emissions from building materials in climate chambers. Part I: clinical data, performance and comfort. Indoor Air 1:377–388

    Article  Google Scholar 

  • Kephalopoulos et al (2013) European Commission, Joint Research Centre Institute for Health and Consumer Protection. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Kirchner S, Mandin C, Derbez M, Ramalho O (2011) Quality of indoor air, quality of life, a decade of research to breathe better, breathe easier. CSTB Press, Paris. 208p

    Google Scholar 

  • Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC, Engelmann WH (2001) The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 11:231–252

    Article  CAS  Google Scholar 

  • Koch HM, Drexler H, Angerer J (2003) An estimation of the daily intake of di(2-ethylhexyl) phthalate (DEHP) and other phthalates in the general population. Int J Hyg Environ Health 206:77–83

    Article  CAS  Google Scholar 

  • Kröling P, Dirnagl K, Drexel H (1982) Gesundheits und befindlichkeitsstörungen in vollklimatisierten räumen. Z Phys Med 11:241–244

    Google Scholar 

  • Li YG (2019) Finding the most valuable references for interdisciplinary research. Indoor Air 29:3–4. https://doi.org/10.1111/ina.12519

    Article  Google Scholar 

  • Lioy P, Weisel C (2014) Exposure science. Elsevier, Amsterdam

    Google Scholar 

  • Little JC, Hodgson AT, Gadgil AJ (1994) Modeling emissions of volatile organic compounds from new carpets. Atmos Environ 28(2):227–234

    Article  CAS  Google Scholar 

  • Liu W, Huang J, Lin Y et al (2020) Negative ions offset cardiorespiratory benefits of PM2.5 reduction from residential use of negative ion air purifiers. Indoor Air 30:31–39. https://doi.org/10.1111/ina.12728

    Article  CAS  Google Scholar 

  • Logue JM, McKone TE, Sherman MH, Singer BC (2011) Hazard assessment of chemical air contaminants measured I residences. Indoor Air 21:92–109

    Article  CAS  Google Scholar 

  • Logue JM, Price PN, Sherman MH, Brett C, Singer BC (2012) A method to estimate the chronic health impact of air pollutants in U.S. residences. Environ Health Perspect 120:216–222

    Article  CAS  Google Scholar 

  • Mandin C, Trantallidi M, Cattaneo A et al (2017) Assessment of indoor air quality in office buildings across Europe – the OFFICAIR study. Sci Total Environ 579:169–178

    Article  CAS  Google Scholar 

  • Mølhave L, Bach B, Pedersen OF (1986) Human reactions to low concentrations of volatile organic compounds. Environ Int 12(1–4):167–175

    Article  Google Scholar 

  • Morawska L, Bofinger ND, Maroni M (1995) Indoor air – an integrated approach. Elsevier Science Limited

    Google Scholar 

  • Morawska L et al (2009) Characteristics and formation mechanisms of particles originating from the operation of laser printers. Environ Sci Technol 43(4):1015–1022

    Article  CAS  Google Scholar 

  • Morawska L, Afshari A, Bae GN, Buonanno G et al (2013) Indoor aerosols: from personal exposure to risk assessment. Indoor Air 23:462–487

    Article  CAS  Google Scholar 

  • Mueller F, Loeb L, Mapes W (1973) Decomposition rates of ozone in living areas. Environ Sci Technol 7:342–353

    Article  CAS  Google Scholar 

  • Mumford JL, He XZ, Chapman RS et al (1987) Lung cancer and indoor air pollution in Xuan Wei, China. Science 35:217–220

    Article  Google Scholar 

  • Murray DM, Burmaster DE (1995) Residential air exchange rates in the United States: empirical and estimated parametric distributions by season and climatic region. Risk Anal 15:459–465

    Article  Google Scholar 

  • Murray CJ, Lopez AD (1996) The global burden of disease. Harvard University Press, Cambridge, MA

    Google Scholar 

  • National Research Council (NRC) (1981) Indoor pollutants. National Academy Press, Washington, DC

    Google Scholar 

  • Nazaroff WW (2012) ISIAQ and the academy of fellows. Indoor Air 22:353–355

    Article  Google Scholar 

  • Nazaroff WW (2013) Exploring the consequences of climate change for indoor air quality. Environ Res Lett 8:015022

    Article  CAS  Google Scholar 

  • Nazaroff WW, Cass GR (1986) Mathematical modeling of chemically reactive pollutants in indoor air. Environ Sci Technol 20:924–934

    Article  CAS  Google Scholar 

  • Nero AV, Nazaroff WW (1984) Characterizing the source of radon indoors. Radiat Prot Dosim 7:23

    Article  CAS  Google Scholar 

  • Nielsen PV (1974a) Flow in air conditional rooms: model experiment and numerical solution of the flow equations, book report. https://vbn.aau.dk/en/persons/109176/publications/?ordering=publicationYearThenTitle&descending=false

  • Nielsen PV (1974b) Prediction of air distribution in a ventilated room. Build Serv Eng 41:219–222

    Google Scholar 

  • Ongwandee M, Morrison GC (2008) Influence of ammonia and carbon dioxide on the sorption of a basic organic pollutant to carpet and latex-painted gypsum board. Environ Sci Technol 42:5415–5420

    Article  CAS  Google Scholar 

  • Ott WR, Steinemann AC, Wallace LA (2007) Exposure analysis. CRC Press, Taylor and Francis Group, Boca Raton

    Google Scholar 

  • Özkaynak H, Xue J, Spengler JD, Wallace LA, Pellizzari ED, Jenkins P (1996) Personal exposure to airborne particles and metals: results from the particle TEAM study in Riverside, CA. J Expo Anal Environ Epidemiol 6:57–78

    Google Scholar 

  • Pepys J, Chan M, Hargreaves FE (1968) Mites and house-dust allergy. Lancet 291:1270–1272

    Article  Google Scholar 

  • Persily A (2015) Challenges in developing ventilation and indoor air quality standards: the story of ASHRAE Standard 62. Build Environ 91:61–69

    Article  Google Scholar 

  • Rawlings CM, McFarland DA, Dahlander L, Wang D (2005) Streams of thought: knowledge flows and intellectual cohesion in a multidisciplinary era. Soc Forces 93:1687–1722

    Article  Google Scholar 

  • Repace JL, Lowry AH (1980) Indoor air pollution, tobacco smoke, and public health. Science 208:464–472

    Article  CAS  Google Scholar 

  • Sabersky RH, Sinema DA, Shair FA (1973) Concentrations, decay rates and removal of ozone and their relation to establishing clean indoor air. Environ Sci Technol 7:347–353

    Article  CAS  Google Scholar 

  • Salthammer T, Mentese S, Marutzky R (2010) Formaldehyde in the indoor environment. Chem Rev 110:2536–2572

    Article  CAS  Google Scholar 

  • Salthammer T, Zhang YP, Mo JH, Koch HM, Weschler CJ (2018) Assessing human exposure to organic pollutants in the indoor environment. Angew Chem Int Ed 57:12228–12263

    Article  CAS  Google Scholar 

  • Sandberg M (1981) What is ventilation efficiency? Build Environ 16(2):123–135

    Article  Google Scholar 

  • Sandberg M, Sjöberg M (1983) The use of moments for assessing air quality in ventilated rooms. Build Environ 18(4):181–197

    Article  Google Scholar 

  • Schripp T, Markewitz D, Uhde E, Salthammer T (2013) Does e-cigarette consumption cause passive vaping? Indoor Air 23:25–31

    Article  CAS  Google Scholar 

  • Shair FH, Heitner KL (1974) Theoretical model for relating indoor pollutant concentrations to those outside. Environ Sci Technol 8(5):444–451

    Article  CAS  Google Scholar 

  • Smith KR (1987) Biofuels, air pollution, and health: a global review. Springer, Boston

    Book  Google Scholar 

  • Smith KR (1993) Fuel combustion, air pollution exposure, and health: the situation in developing countries. Annu Rev Energy Environ 18:529–566

    Article  Google Scholar 

  • Smith KR (2000) National burden of disease in India from indoor air pollution. Proc Natl Acad Sci 97(24):13286–13293

    Article  CAS  Google Scholar 

  • Smith KR, Mehta S (2003) The burden of disease from indoor air pollution in developing countries: comparison of estimates. Int J Hyg Environ Health 206(4–5):279–89. https://doi.org/10.1078/1438-4639-00224

  • Spengler JD, Samet JM, McCarthy JF (2001) Indoor air quality handbook. 1st ed. New York: McGraw-Hill

    Google Scholar 

  • Sundell J (1994) On the association between building ventilation characteristics, some indoor environmental exposures, some allergic manifestations, and subjective symptom reports. Indoor Air S2:7–49

    Article  Google Scholar 

  • Sundell J (2017) Reflections on the history of indoor air science, focusing on the last 50 years. Indoor Air 27:1–17

    Article  Google Scholar 

  • Szalai A (1972) The use of time: daily activities of urban and suburban populations in twelve countries. Mouton, The Hague

    Google Scholar 

  • The Building Information Foundation RTS (1996) M1-Emission Classification of Building Materials. https://www.greenbuildingsupply.com/core/media/media.nl?id=411494&c=772072&h=d447753ebd140a0896b3&_xt=.pdf. Accessed 20 Apr 2021

  • The Institute of Medicine of the US National Academies (2011) Climate change, the indoor environment, and health. The National Academies Press, Washington, DC (pdf file available: http://www.nap.edu/catalog.php?record_id=13115).

  • Thompson CR, Hensel EG, Kats G (1973) Outdoor indoor levels of six air pollutants. J Air Pollut Control Assoc 23:881–886

    Article  CAS  Google Scholar 

  • Tichenor BA, Sparks LA, White JB, Jackson MD (1990) Evaluating sources of indoor air pollution. J Air Waste Manage Assoc 49:487–492

    Article  Google Scholar 

  • Turk A (1963) Measurements of odorous vapors in test chambers: theoretical. ASHRAE J 5:55–58

    CAS  Google Scholar 

  • Turpin BJ, Weisel CP, Morandi M et al (2007) Relationships of indoor, outdoor, and personal air (RIOPA): part II. Analyses of concentrations of particulate matter species. Research Report (Health Effects Institute). 2007(#130 Pt 2):1–77

    Google Scholar 

  • US Environmental Protection Agency (USEPA) (2011) Exposure factors handbook: 2011 Edition, Chapter 14, Report No. EPA/600/R-09/052F, National Center for Environmental Assessment, Office of Research and Development, Washington, DC 20460, pp 43

    Google Scholar 

  • US Green Building Council (USGBC) (2021) Where LEED began. https://www.usgbc.org/about/brand. Accessed 17 Aug 2021

  • US National Research Council (NRC) of the National Academies (NS) (2014) Review of the formaldehyde assessment in the national toxicology program 12th report on carcinogens ISBN 978-0-309-31127-1. This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=18948

  • Vardoulakis S, Dimitroulopoulou C, Thornes J, Lai KM, Taylor J, Myers I et al (2015) Impact of climate change on the domestic indoor environment and associated health risks in the UK. Environ Int 85:299–313

    Article  CAS  Google Scholar 

  • Voorhorst R, Spieksma-Boezeman MI, Spieksma FT (1963) Is a mite (Dermatophagoides sp.) the producer of the house-dust allergen. Allergy Asthma 10:329–334

    Google Scholar 

  • Voorhorst R, Spieksma FTM, Varekamp H et al (1967) The house-dust mite (Dermatophagoides pteronyssinus) and the allergens it produces. Identity with house-dust allergen. J Allergy 39:325–339

    Article  Google Scholar 

  • Wallace LA (1996) Indoor particles: a review. J Air Waste Manag Assoc 46:98–126

    Article  CAS  Google Scholar 

  • Wallace LA, Pellizzari ED, Hartwell TD et al (1987) The TEAM study: personal exposures to toxic substances in air, drinking water, and breath of 400 residents of New Jersey, North Carolina, and North Dakota. Environ Res 43(2):290–307

    Article  CAS  Google Scholar 

  • Wang H, Morrison GC (2006) Ozone initiated secondary emission rates of aldehydes from indoor surfaces in four homes. Environ Sci Technol:5263–5268

    Google Scholar 

  • Weisel CP, Zhang J, Turpin BJ, et al (2005) Relationships of indoor, outdoor, and personal air (RIOPA). Part I. Collection methods and descriptive analyses. Research Report (Health Effects Institute). 2005(#130 Pt 1):1–107

    Google Scholar 

  • Weschler CJ (1980) Characterization of selected organics in size-fractionated indoor aerosols. Environ Sci Technol 14:428–431

    Article  CAS  Google Scholar 

  • Weschler CJ (2009) Changes in indoor pollutants since the 1950s. Atmos Environ 43:153–169

    Article  CAS  Google Scholar 

  • Weschler CJ, Shields HC (1996) Production of the hydroxyl radical in indoor air. Environ Sci Technol 30(11):3250–3258

    Article  CAS  Google Scholar 

  • Weschler CJ, Shields HC (1997a) Measurements of the hydroxyl radical in a manipulated but realistic indoor environment. Environ Sci Technol 31(12):3719–3722

    Article  CAS  Google Scholar 

  • Weschler CJ, Shields HC (1997b) Potential reactions among indoor pollutants. Atmos Environ 31(21):3487–3495

    Article  Google Scholar 

  • Weschler CJ, Shields HC (1999) Indoor ozone/terpene reactions as a source of indoor particles. Atmos Environ 33(15):2301–2312

    Article  CAS  Google Scholar 

  • Weschler CJ, Shields HC, Naik DV (1989) Indoor ozone exposures. J Air Pollut Control Assoc 39(12):1562–1568

    CAS  Google Scholar 

  • Weschler CJ, Hodgson AT, Wooley JD (1992) Indoor chemistry: ozone, volatile organic compounds, and carpets. Environ Sci Technol 26:2371–2377

    Article  CAS  Google Scholar 

  • Weschler CJ, Beko G, Koch HM et al (2015) Transdermal uptake of diethyl phthalate and di(n-butyl) phthalate directly from air: experimental verification. Environ Health Perspect 123:928–934

    Article  CAS  Google Scholar 

  • WHO (1989) Indoor air quality: organic pollutants. EURO reports and studies no. 111. World Health Organization, Copenhagen

    Google Scholar 

  • WHO (2009) Development of WHO guidelines for indoor air quality: Dampness and mould, Bonn. https://www.who.int/publications/i/item/9789289041683

  • WHO (2010) WHO guidelines for indoor air quality: Selected pollutants, Bonn. http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf

  • WHO (2014) WHO indoor air quality guidelines: household fuel combustion. Geneva. https://www.who.int/publications/i/item/9789241548885

  • WHO (2021) Global air quality guidelines. particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization, Geneva. https://apps.who.int/iris/handle/10665/345329

  • Wild CP (2012) The exposome: from concept to utility. Int J Epidemiol 41:24–32

    Article  Google Scholar 

  • Wisthaler A, Weschler CJ (2010) Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air. Proc Natl Acad Sci (PNAS) 107(15):6568–6575

    Google Scholar 

  • Wittmann O (1962) Die nachträgliche Formaldehydabspaltung bei Spanplatten. Holz Roh Werkst 20:221–224

    Article  Google Scholar 

  • Wolkoff P (2013) Indoor air pollutants in office environments: assessment of comfort, health, and performance. Int J Hyg Environ Health 216:371–394

    Article  CAS  Google Scholar 

  • Wolkoff P (2020) Dry eye symptoms in offices and deteriorated work performance – a perspective. Build Environ 172:106704

    Article  Google Scholar 

  • Wolkoff P, Nielsen PA (1996) A new approach for indoor climate labeling of building materials – emission testing, modeling, and comfort evaluation. Atmos Environ 30:2679–2689

    Article  CAS  Google Scholar 

  • Wolkoff P, Clausen PA, Nielsen PA, Gustaffson H, Jonsson B, Rasmussen E (1991a) Field and laboratory emission cell: FLEC. In: Healthy buildings, IAQ-91. American Society of Heating, Refrigerating and Air Conditioning Engineers Inc (ASHRAE), Washington, DC, pp 160–165

    Google Scholar 

  • Wolkoff P, Nielsen GD, Hansen LF et al (1991b) A study of human reactions to building materials in climatic chambers. Part II: VOC measurements, mouse bioassay, and decipol evaluation in the 1-2 mg/M3 TVOC range. Indoor Air 1:389–403

    Article  Google Scholar 

  • World Health Organization (WHO) (1979) Health aspects related to indoor air quality, EURO Reports and Studies 21, Copenhagen

    Google Scholar 

  • Xu Y, Little JC (2006) Predicting emissions of SVOCs from polymeric materials and their interaction with airborne particles. Environ Sci Technol 40:456–461

    Article  CAS  Google Scholar 

  • Xu Y, Zhang YP (2003) An improved mass transfer based model for analyzing VOC emissions from building materials. Atmos Environ 37(18):2497–2505

    Article  CAS  Google Scholar 

  • Yaglou CP, Riley EC, Coggins DI (1936) Ventilation requirements. ASHVE Trans 42:133–162

    Google Scholar 

  • Zhang JS, Chen WH, Liu NR, Guo BB, Zhang YP (2022) Testing and reducing VOC emissions from building materials and furniture to improve indoor air quality. Handbook of Indoor Air Quality, SpringerNature, https://doi.org/10.1007/978-981-10-5155-5_53-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinping Zhang .

Editor information

Editors and Affiliations

Appendix

Appendix

Table A1 1st -16th Indoor Air International Conferences from 1978 to 2020
Table A2 Executive committee of the Academy of Fellows of ISIAQ (1991–2022)
Table A3 Presidents of ISIAQ (1992–2022)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, Y., Hopke, P.K., Mandin, C. (2022). History and Perspective on Indoor Air Quality Research. In: Zhang, Y., Hopke, P.K., Mandin, C. (eds) Handbook of Indoor Air Quality. Springer, Singapore. https://doi.org/10.1007/978-981-10-5155-5_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5155-5_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5155-5

  • Online ISBN: 978-981-10-5155-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics